73 lines
2.4 KiB
Python
73 lines
2.4 KiB
Python
|
import random
|
||
|
import math
|
||
|
from PIL import Image
|
||
|
""" Produce a series of Perlin noise images that tile with each other
|
||
|
and wrap at the end of the sequence. The pixel value are interpreted as
|
||
|
heights and colour values then calculated to represent a normal map.
|
||
|
"""
|
||
|
# values used by the noise function
|
||
|
perm = list(range(256))
|
||
|
random.seed(1)
|
||
|
random.shuffle(perm)
|
||
|
perm += perm
|
||
|
dirs = [(math.cos(a * 2.0 * math.pi / 256),
|
||
|
math.cos((a+85) * 2.0 * math.pi / 256),
|
||
|
math.cos((a+170) * 2.0 * math.pi / 256))
|
||
|
for a in range(256)]
|
||
|
|
||
|
def noise(x, y, z, per):
|
||
|
def surflet(gridX, gridY, gridZ):
|
||
|
distX, distY, distZ = abs(x-gridX), abs(y-gridY), abs(z-gridZ)
|
||
|
polyX = 1 - 6*distX**5 + 15*distX**4 - 10*distX**3
|
||
|
polyY = 1 - 6*distY**5 + 15*distY**4 - 10*distY**3
|
||
|
polyZ = 1 - 6*distZ**5 + 15*distZ**4 - 10*distZ**3
|
||
|
hashed = perm[perm[perm[int(gridX)%per] + int(gridY)%per] + int(gridZ)%per]
|
||
|
grad = (x-gridX)*dirs[hashed][0] + (y-gridY)*dirs[hashed][1] + (z-gridZ)*dirs[hashed][2]
|
||
|
return polyX * polyY * polyZ * grad
|
||
|
|
||
|
intX, intY, intZ = int(x), int(y), int(z)
|
||
|
return (surflet(intX+0, intY+0, intZ+0) + surflet(intX+0, intY+0, intZ+1) + surflet(intX+0, intY+1, intZ+0) +
|
||
|
surflet(intX+0, intY+1, intZ+1) + surflet(intX+1, intY+0, intZ+0) + surflet(intX+1, intY+0, intZ+1) +
|
||
|
surflet(intX+1, intY+1, intZ+0) + surflet(intX+1, intY+1, intZ+1))
|
||
|
|
||
|
def fBm(x, y, z, per, octs):
|
||
|
val = 0
|
||
|
for o in range(octs):
|
||
|
val += 0.5**o * noise(x*2**o, y*2**o, z*2**o, per*2**o)
|
||
|
return val
|
||
|
|
||
|
|
||
|
""" variables used by the noise file generator:
|
||
|
num -- images in sequence
|
||
|
size -- size to resize each image to
|
||
|
freq -- frequency of noise
|
||
|
octs -- octaves of noise
|
||
|
"""
|
||
|
num = 128
|
||
|
size = 32
|
||
|
freq = 1/8.0
|
||
|
octs = 5
|
||
|
###################################################
|
||
|
|
||
|
for z in range (num):
|
||
|
data = []
|
||
|
print z
|
||
|
for y in range(num):
|
||
|
for x in range(num):
|
||
|
data.append(fBm(x*freq, y*freq, z*freq, int(num*freq), octs))
|
||
|
im_data = []
|
||
|
for y in range(num):
|
||
|
for x in range(num):
|
||
|
rVal = 0.5 + (data[((y+1)%num)*num + x] - data[y*num + x])*0.5
|
||
|
gVal = 0.5 + (data[y*num + (x+1)%num] - data[y*num + x])*0.5
|
||
|
bVal = 1.0/math.sqrt(1.0 + rVal**2 + gVal**2)
|
||
|
im_data.append((int(255*rVal), int(255*gVal), int(255*bVal), 255))
|
||
|
|
||
|
im = Image.new("RGBA", (num, num))
|
||
|
im.putdata(im_data, 1.0, 0.0)
|
||
|
im = im.resize((size, size))
|
||
|
im.save("n_norm"+format(z, '03d')+".png")
|
||
|
|
||
|
print "finished doing it"
|
||
|
|