DSA/algorithms/CPlusPlus/Graphs/prim's_algorithm.cpp

96 lines
2.2 KiB
C++
Raw Permalink Normal View History

/*
PREREQUISITE -->
1. GRAPH
2. PRIORITY QUEUE
*/
#include<bits/stdc++.h>
using namespace std;
vector<vector<pair<int,int>>> graph;
vector<bool> vis;
int primAlgorithm(){
int totalCost = 0;
// totalCost will store the minimum spanning tree
set<pair<int,int>> pq;
/*
here pq -> priority queue ( it sorts all elements )
it takes two value
1. weight
2. vertex
Here, priority queue will be sorted according to weight
*/
pq.insert({0,1});
/*
initialising the priority queue with {0,1}
Since, vertex 1 is the first vertex so we don't have to travel through a
edge to reach vertex 1
*/
while( !pq.empty() ){
// taking the values of first elements from priority queue
int wt = (*pq.begin()).first; // weight of first vertex in priority queue
int v = (*pq.begin()).second; // first vertex
pq.erase(pq.begin());
if( vis[v] ) continue;
// if the vertex 'v' is visited then continue and don't proceed
vis[v] = true;
totalCost += wt;
// if the vertex is not visited then mark it visited
// and add the weight to total cost
// traverse all the child of vertex 'v'
for( auto elem : graph[v] ){
if( vis[elem.first] ) continue;
// if child is visited then don't insert in priority queue
// else insert in priority queue
pq.insert({elem.second,elem.first});
}
}
graph.clear(); // clearing all values in graph
return totalCost;
}
int main()
{
int n,e; cin>>n>>e;
// n -> number of vertex in graph
// e -> number of edges in graph
// initialising the graph
graph = vector<vector<pair<int,int>>> (n+1);
// initialising the visited vector to false
// it represent if the vertex is visited or not
vis = vector<bool>(n+1,false);
// taking the input of 'e' edges
for(int i=0; i<e; i++)
{
int a,b,wt; cin>>a>>b>>wt;
/*
a,b -> vertexs of graph
wt -> weight of edge between vertex 'a' and 'b'
*/
graph[a].push_back({b,wt});
graph[b].push_back({a,wt});
// it creates adjcency list by pushing all
// the vertexs(with weight) which are directly connected by edges.
}
cout<<primAlgorithm();
return 0;
}