84 lines
1.6 KiB
C++
84 lines
1.6 KiB
C++
|
/*
|
|||
|
Problem: finding all prime numbers in a range [L,R], where R <= 1e12 and (R-L+1) <= 1e7.
|
|||
|
*/
|
|||
|
|
|||
|
#include <bits/stdc++.h>
|
|||
|
using namespace std;
|
|||
|
|
|||
|
//function to find prime numbers between L and R
|
|||
|
void segmented_sieve_range(long int L, long int R){
|
|||
|
|
|||
|
// generate all primes up to sqrt(R)
|
|||
|
long int e = sqrt(R);
|
|||
|
|
|||
|
// vector to store whether ith element is visited or not
|
|||
|
vector<bool> check(e + 1, false);
|
|||
|
|
|||
|
//stores all primes till sqrt(R)
|
|||
|
vector<long int> primes;
|
|||
|
|
|||
|
for (long int i = 2; i <= e; ++i) {
|
|||
|
if (!check[i]) {
|
|||
|
|
|||
|
//i is a prime number
|
|||
|
primes.push_back(i);
|
|||
|
for (long int j = i*i; j <= e; j += i){
|
|||
|
check[j] = true;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
vector<bool> isPrime(R - L + 1, true);
|
|||
|
|
|||
|
//edge case
|
|||
|
if(L == 1){
|
|||
|
isPrime[0] = false;
|
|||
|
}
|
|||
|
|
|||
|
for (long int i = 0; i < primes.size() ; i++){
|
|||
|
|
|||
|
//current Prime
|
|||
|
long int cur = primes[i];
|
|||
|
long int product = cur*cur;
|
|||
|
|
|||
|
for(long int start = max(product, (L + cur -1)/product); start <= R ; start += cur){
|
|||
|
isPrime[start - L] = false;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
//Printing all primes in the range L to R
|
|||
|
for(long int i = 0; i < isPrime.size(); i++){
|
|||
|
if(isPrime[i]){
|
|||
|
//current index element is a prime number
|
|||
|
cout<< L + i << " ";
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
cout << endl;
|
|||
|
}
|
|||
|
|
|||
|
//main starts
|
|||
|
int main()
|
|||
|
{
|
|||
|
long int L, R;
|
|||
|
cin >> L >> R;
|
|||
|
|
|||
|
segmented_sieve_range(L, R);
|
|||
|
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
Time Complexity - O((R−L+1)log(R) + √R)
|
|||
|
|
|||
|
Input:
|
|||
|
30 50
|
|||
|
Output:
|
|||
|
31 37 41 43 47
|
|||
|
|
|||
|
Input:
|
|||
|
10 20
|
|||
|
Output:
|
|||
|
11 13 17 19
|
|||
|
*/
|