DSA/algorithms/CPlusPlus/Trees/print-all-nodes-at-a-level.cpp

84 lines
1.8 KiB
C++
Raw Permalink Normal View History

/* Description - We have to print all nodes at a level 'k' of the tree.
For example- If we are given the following tree, the nodes at level 1 are 1, nodes at level 2 are 2,3, nodes at level 3 are 7, 9 and nodes at level 4 are 21 and 11.
(Note- The level starts from 1, i.e root is at level 1)
1 level 1
/ \
2 3 level 2
/ \
7 9 level 3
/ \
21 11 level 4
*/
#include<bits/stdc++.h>
using namespace std;
typedef struct Node
{
int data;
struct Node* left;
struct Node* right;
Node(int val)
{
data= val;
left=right=NULL;
}
}node;
//function for level order traversal
void levelorder(Node* root, int k)
{
if(root==NULL)
return;
queue<Node*> q;
q.push(root);
int count=0; //for calculating at which level we are.
while(!q.empty())
{
count++; //increment the value of count as level is incremented
int n=q.size();
for(int i=0; i<n; i++)
{
Node* temp=q.front();
q.pop();
if(count==k) { //if level is equal to the required level, then print its nodes
cout<<temp->data<<" ";
}
if(temp->left!=NULL){
q.push(temp->left);
}
if(temp->right!=NULL){
q.push(temp->right);
}
}
}
}
//main function
int main()
{
node*root=new node(1);
root->left=new node(2);
root->right=new node(3);
root->right->left=new node(7);
root->right->right=new node(9);
root->right->left->left=new node(21);
root->right->right->right=new node(11);
int k = 3; // here we have taken k=3 (third level of tree)
levelorder(root,k); //calling level order function
}
// The output of the above program will be 7 9. Since k=3 and nodes at level 3 are 7 and 9.
// Time Complexity: O(n) where n is the number of nodes in the binary tree
// Space Complexity: O(n) where n is the number of nodes in the binary tree