DSA/algorithms/Python/recursion/gcd_using_recursion.py

24 lines
524 B
Python
Raw Permalink Normal View History

#EUCLIDS ALGORITHM
def gcd(a, b):
if a<0:
a = -a
if b<0:
b = -b
if b==0:
return a
else:
return gcd(b, a%b)
#TIME COMPLEXITY - O(log(min(a, b)))
#EXAMPLES
#print(gcd(10, 2)) -> 2
#print(gcd(30, 15)) -> 3
#print(gcd(-30, 15)) -> 3
#WORKING
#We are using the Euclidean Algorithm to calculate the GCD of a number
#it states that if a and b are two positive integers then GCD or greatest common
#divisors of these two numbers will be equal to the GCD of b and a%b or
#gcd(a, b) = gcd(b, a%b) till b reaches 0