69 lines
1.7 KiB
Java
69 lines
1.7 KiB
Java
|
// Java implementation of
|
||
|
// finding length of longest
|
||
|
// Common substring using
|
||
|
// Dynamic Programming
|
||
|
class GFG {
|
||
|
/*
|
||
|
Returns length of longest common substring
|
||
|
of X[0..m-1] and Y[0..n-1]
|
||
|
*/
|
||
|
static int LCSubStr(char X[], char Y[], int m, int n)
|
||
|
{
|
||
|
// Create a table to store
|
||
|
// lengths of longest common
|
||
|
// suffixes of substrings.
|
||
|
// Note that LCSuff[i][j]
|
||
|
// contains length of longest
|
||
|
// common suffix of
|
||
|
// X[0..i-1] and Y[0..j-1].
|
||
|
// The first row and first
|
||
|
// column entries have no
|
||
|
// logical meaning, they are
|
||
|
// used only for simplicity of program
|
||
|
int LCStuff[][] = new int[m + 1][n + 1];
|
||
|
|
||
|
// To store length of the longest
|
||
|
// common substring
|
||
|
int result = 0;
|
||
|
|
||
|
// Following steps build
|
||
|
// LCSuff[m+1][n+1] in bottom up fashion
|
||
|
for (int i = 0; i <= m; i++)
|
||
|
{
|
||
|
for (int j = 0; j <= n; j++)
|
||
|
{
|
||
|
if (i == 0 || j == 0)
|
||
|
LCStuff[i][j] = 0;
|
||
|
else if (X[i - 1] == Y[j - 1])
|
||
|
{
|
||
|
LCStuff[i][j] = LCStuff[i - 1][j - 1] + 1;
|
||
|
result = Integer.max(result, LCStuff[i][j]);
|
||
|
}
|
||
|
else
|
||
|
LCStuff[i][j] = 0;
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
// Driver Code
|
||
|
public static void main(String[] args)
|
||
|
{
|
||
|
// Test 1:
|
||
|
String X = "abcdabaabbacd";
|
||
|
String Y = "abbabaabcabcd";
|
||
|
int m = X.length();
|
||
|
int n = Y.length();
|
||
|
System.out.println(LCSubStr(X.toCharArray(), Y.toCharArray(), m, n));
|
||
|
|
||
|
// Test 2:
|
||
|
String X = "abcdefgh";
|
||
|
String Y = "abaabcfg";
|
||
|
int m = X.length();
|
||
|
int n = Y.length();
|
||
|
System.out.println(LCSubStr(X.toCharArray(), Y.toCharArray(), m, n));
|
||
|
}
|
||
|
}
|
||
|
// Time Complexity -> O(m*n)
|
||
|
// where m and n are the lengths of the strings X and Y.
|