171 lines
3.2 KiB
C++
171 lines
3.2 KiB
C++
|
//Topological sort to check order using dfs
|
||
|
|
||
|
#include<bits/stdc++.h>
|
||
|
|
||
|
using namespace std;
|
||
|
|
||
|
/*
|
||
|
Using graph class with vector of nodes to represent DAG(Directed acyclic graph)
|
||
|
adding edge and display functions in class along with Cycle to check for cycle
|
||
|
and if no cycle exits then print a topological sort.
|
||
|
*/
|
||
|
class Graph {
|
||
|
|
||
|
int n = 0;
|
||
|
vector < int > * EdgeList;
|
||
|
|
||
|
public:
|
||
|
Graph() {
|
||
|
n = 0;
|
||
|
}
|
||
|
|
||
|
Graph(int s) { //initialize edgelist as vector of nodes
|
||
|
n = s;
|
||
|
EdgeList = new vector < int > [n];
|
||
|
}
|
||
|
void addEdge(int src, int dest) { //add edges
|
||
|
|
||
|
EdgeList[src].push_back(dest);
|
||
|
|
||
|
}
|
||
|
|
||
|
bool Cycle(int v, vector < int > & visited, vector < int > & rec) { //Check cycle
|
||
|
|
||
|
if (!visited[v]) {
|
||
|
|
||
|
visited[v] = 1;
|
||
|
rec[v] = 1;
|
||
|
|
||
|
for (auto it: EdgeList[v]) {
|
||
|
|
||
|
if (!visited[it] && Cycle(it, visited, rec)) return true;
|
||
|
|
||
|
else if (rec[it]) return true;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rec[v] = 0;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void TopSort(int v, vector < int > & visited, stack < int > & s) { //Topological sorted elements added in stack
|
||
|
|
||
|
visited[v] = 1;
|
||
|
vector < int > ::iterator it;
|
||
|
for (it = EdgeList[v].begin(); it != EdgeList[v].end(); it++) {
|
||
|
|
||
|
if (!visited[ * it]) TopSort( * it, visited, s); //visit graph in order(depth first) for topological
|
||
|
|
||
|
}
|
||
|
|
||
|
s.push(v);
|
||
|
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
int main() {
|
||
|
|
||
|
int flag = 0, n, k, src, dest;
|
||
|
cout << "\nEnter no. of nodes\n"; //input number of nodes
|
||
|
cin >> n;
|
||
|
Graph g(n);
|
||
|
vector < int > visited(n, 0); //stack to keep track of topological sort,visited vector to keep track of nodes visited and rec stack to detect cycle
|
||
|
vector < int > rec(n, 0);
|
||
|
stack < int > s;
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
cout << "Enter 1 to add edge from node " << i << ",0 to exit" << "\n"; //take input
|
||
|
cin >> k;
|
||
|
while (k) {
|
||
|
|
||
|
cout << "\nEnter dest\n";
|
||
|
cin >> dest;
|
||
|
g.addEdge(i, dest);
|
||
|
|
||
|
cout << "Enter 1 to add edge from node " << i << ",0 to exit" << "\n";
|
||
|
cin >> k;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
if (g.Cycle(i, visited, rec)) { //check for cycle
|
||
|
|
||
|
flag = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (flag) cout << "Not DAG"; //if not cycle then find topological sort
|
||
|
|
||
|
else {
|
||
|
|
||
|
fill(visited.begin(), visited.end(), 0);
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
if (!visited[i]) g.TopSort(i, visited, s);
|
||
|
}
|
||
|
cout << "\nOne topological sorted order: ";
|
||
|
while (!s.empty()) { //print stack contents
|
||
|
|
||
|
cout << s.top() << " ";
|
||
|
s.pop();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
|
||
|
Time Complexity-O(V+E)
|
||
|
Space Complexity-O(V)
|
||
|
|
||
|
Enter no. of nodes
|
||
|
6
|
||
|
Enter 1 to add edge from node 0,0 to exit
|
||
|
0
|
||
|
Enter 1 to add edge from node 1,0 to exit
|
||
|
0
|
||
|
Enter 1 to add edge from node 2,0 to exit
|
||
|
1
|
||
|
|
||
|
Enter dest
|
||
|
3
|
||
|
Enter 1 to add edge from node 2,0 to exit
|
||
|
0
|
||
|
Enter 1 to add edge from node 3,0 to exit
|
||
|
1
|
||
|
|
||
|
Enter dest
|
||
|
1
|
||
|
Enter 1 to add edge from node 3,0 to exit
|
||
|
0
|
||
|
Enter 1 to add edge from node 4,0 to exit
|
||
|
1
|
||
|
|
||
|
Enter dest
|
||
|
0
|
||
|
Enter 1 to add edge from node 4,0 to exit
|
||
|
1
|
||
|
|
||
|
Enter dest
|
||
|
1
|
||
|
Enter 1 to add edge from node 4,0 to exit
|
||
|
0
|
||
|
Enter 1 to add edge from node 5,0 to exit
|
||
|
1
|
||
|
|
||
|
Enter dest
|
||
|
0
|
||
|
Enter 1 to add edge from node 5,0 to exit
|
||
|
1
|
||
|
|
||
|
Enter dest
|
||
|
2
|
||
|
Enter 1 to add edge from node 5,0 to exit
|
||
|
0
|
||
|
One Topological sorted order: 5 4 2 3 1 0
|
||
|
*/
|