78 lines
2.2 KiB
Java
78 lines
2.2 KiB
Java
|
/* QUESTION:
|
||
|
You are given N number of books. Every ith book has pages[i] number of pages.
|
||
|
You have to allocate books to M number of students. There can be many ways or permutations to do so.
|
||
|
In each permutation, one of the M students will be allocated the maximum number of pages.
|
||
|
Out of all these permutations, the task is to find that particular permutation in which the maximum number of pages allocated to a student is minimum of those in all the other permutations and print this minimum value.
|
||
|
Each book will be allocated to exactly one student. Each student has to be allocated at least one book. */
|
||
|
|
||
|
import java.io.*;
|
||
|
import java.util.*;
|
||
|
class GFG {
|
||
|
public static void main (String[] args) {
|
||
|
Scanner sc=new Scanner(System.in);
|
||
|
int t=sc.nextInt(); //number of test cases
|
||
|
while(t-->0){
|
||
|
int N=sc.nextInt();
|
||
|
int pages[]=new int[N];
|
||
|
|
||
|
for(int i=0;i<N;i++){
|
||
|
pages[i]=sc.nextInt();
|
||
|
}
|
||
|
int M=sc.nextInt();
|
||
|
System.out.println(findPages(pages,N, M));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static int findPages(int[]arr,int n,int m)
|
||
|
{
|
||
|
if(n<m) return -1;
|
||
|
int sum=0;
|
||
|
for(int i=0;i<n;i++){
|
||
|
sum+=arr[i];
|
||
|
}
|
||
|
int start=0, end=sum;
|
||
|
int res = Integer.MAX_VALUE;
|
||
|
while(start<=end){
|
||
|
int mid = start+(end-start)/2;
|
||
|
if(isPossible(arr, n, m, mid)){
|
||
|
res = Math.min(res, mid);
|
||
|
end = mid-1;
|
||
|
}
|
||
|
else start=mid+1;
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
public static boolean isPossible(int arr[], int n, int m, int curr_min){
|
||
|
int student=1;
|
||
|
int curr_sum=0;
|
||
|
for(int i=0;i<n;i++){
|
||
|
if(arr[i]>curr_min) return false;
|
||
|
if(curr_sum+arr[i]>curr_min){
|
||
|
student++;
|
||
|
curr_sum = arr[i];
|
||
|
if(student>m) return false;
|
||
|
}
|
||
|
else curr_sum+=arr[i];
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Input:
|
||
|
N = 4
|
||
|
A[] = {12,34,67,90}
|
||
|
M = 2
|
||
|
|
||
|
Output:
|
||
|
113
|
||
|
|
||
|
Explanation:
|
||
|
Allocation can be done in following ways:
|
||
|
{12} and {34, 67, 90} Maximum Pages = 191
|
||
|
{12, 34} and {67, 90} Maximum Pages = 157
|
||
|
{12, 34, 67} and {90} Maximum Pages =113
|
||
|
Therefore, the minimum of these cases is
|
||
|
113, which is selected as the output.
|
||
|
*/
|