112 lines
3.8 KiB
C++
112 lines
3.8 KiB
C++
|
/*
|
||
|
Program to convert a infix expression to postfix expression a.k.a Inverted Polish Notation.
|
||
|
INFIX NOTATION : An infix expression is an expression in which operators (+, -, *, /) are written between the two operands.
|
||
|
POSTFIX NOTATION : The postfix operator also contains operator and operands. In the postfix expression, the operator is written after the operand.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
LOGIC
|
||
|
1. Initialize the Stack.
|
||
|
2. Scan the operator from left to right in the infix expression.
|
||
|
3. If the leftmost character is an operand, set it as the current output to the Postfix string.
|
||
|
4. And if the scanned character is the operator and the Stack is empty or contains the '(', ')' symbol, push the operator into the Stack.
|
||
|
5. If the scanned operator has higher precedence than the existing precedence operator in the Stack or if the Stack is empty, put it on the Stack.
|
||
|
6. If the scanned operator has lower precedence than the existing operator in the Stack, pop all the Stack operators. After that, push the scanned operator into the Stack.
|
||
|
7. If the scanned character is a left bracket '(', push it into the Stack.
|
||
|
8. If we encountered right bracket ')', pop the Stack and print all output string character until '(' is encountered and discard both the bracket.
|
||
|
9. Repeat all steps from 2 to 8 until the infix expression is scanned.
|
||
|
10. Print the Stack output.
|
||
|
11. Pop and output all characters, including the operator, from the Stack until it is not empty.
|
||
|
*/
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
#include <algorithm>
|
||
|
#include <iterator>
|
||
|
#include <stack>
|
||
|
using namespace std;
|
||
|
|
||
|
vector<char> op = {'+', '-', '*', '/', '^', '(', ')'}; // oprators a.c.t. precedencies
|
||
|
|
||
|
int pre(char ch, string opt)
|
||
|
{
|
||
|
vector<int> in_pre = {2, 2, 4, 4, 5, 0, 0}; // precedency if operator is in stack
|
||
|
vector<int> out_pre = {1, 1, 3, 3, 6, 7, 0}; // precedency if operator is out of stack
|
||
|
int idx = find(op.begin(), op.end(), ch) - op.begin();
|
||
|
if (opt == "out")
|
||
|
{
|
||
|
return out_pre[idx];
|
||
|
} // if the operator is out of stack -> return its precedency
|
||
|
else
|
||
|
{
|
||
|
return in_pre[idx];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
string to_postfix(string infix)
|
||
|
{
|
||
|
stack<char> st;
|
||
|
string str;
|
||
|
for (int i = 0; i < infix.size(); i++)
|
||
|
{
|
||
|
if (find(op.begin(), op.end(), infix[i]) != op.end() and !op.empty())
|
||
|
{
|
||
|
if (st.empty() or (pre(infix[i], "out") > pre(st.top(), "in")))
|
||
|
st.push(infix[i]); // if st is empty or the element has higher precedency than stacks top element, push the operator into the stack.
|
||
|
else if (infix[i] == '(')
|
||
|
st.push('(');
|
||
|
else if (infix[i] == ')')
|
||
|
{
|
||
|
while (st.top() != '(')
|
||
|
{
|
||
|
str += st.top();
|
||
|
st.pop();
|
||
|
}
|
||
|
st.pop();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
while (!st.empty() && pre(infix[i], "out") < pre(st.top(), "in"))
|
||
|
{
|
||
|
str += st.top();
|
||
|
st.pop();
|
||
|
}
|
||
|
st.push(infix[i]);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
str += infix[i];
|
||
|
}
|
||
|
while (!st.empty())
|
||
|
{
|
||
|
str += st.top();
|
||
|
st.pop();
|
||
|
}
|
||
|
return str;
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
int n;
|
||
|
string infix;
|
||
|
cout << "Enter the number of test cases ";
|
||
|
cin >> n;
|
||
|
// run loop till t is not equal to 0
|
||
|
while (n--)
|
||
|
{
|
||
|
cout << "Enter the Infix expression ";
|
||
|
cin >> infix;
|
||
|
cout << "Postfix Expression of " << infix << " is " << to_postfix(infix) << endl;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
to_postfix("2+7*5") // Should return "275*+"
|
||
|
to_postfix("3*3/(7+1)") // Should return "33*71+/"
|
||
|
to_postfix("5+(6-2)*9+3^(7-1)") // Should return "562-9*+371-^+"
|
||
|
to_postfix("1^2^3") // Should return "123^^"
|
||
|
|
||
|
time complexity : T(n)
|
||
|
space complexity : O(n)
|
||
|
*/
|