DSA/algorithms/Java/searching/binary-search.java

65 lines
2.0 KiB
Java
Raw Normal View History

// Algorithm BinarySearch Iterative method
/*binarySearch(arr, x, low, high)
repeat till low = high
mid = (low + high)/2
if (x == arr[mid])
return mid
else if (x > arr[mid]) // x is on the right side
low = mid + 1
else // x is on the left side
high = mid - 1
*/
// Time Complexity : O(log(n))
public class BinarySearch {
static int binarySearch(int arr[], int key)
{
int start = 0;
int end = arr.length - 1;
while (start <= end) {
// We use (start + (end - start)/2) rather than using (start + end)/2 to avoid
// arithmetic overflow.
// Arithmetic overflow is the situation when the value of a variable increases
// beyond the maximum value of the memory location, and wraps around.
int mid = start + (end - start) / 2; // optimised way
if (arr[mid] == key)// key element is found at the middle of the array
return mid;
else if (arr[mid] < key) {// so the key lies in the right hand side of array
start = mid + 1;
}
else {// so the key lies in the left subarray
end = mid - 1;
}
}
// we reach here when the key element is not present
return -1;
}
public static void main(String[] args)
{
int arr[] = { 1, 3, 4, 5, 6 };
/*
* List<ArrayList<Integer>> arr = new ArrayList<>();
* arr.add(new ArrayList<Integer>(Arrays.asList( 1, 3, 4, 5, 6 )));
*/
int key = 4; // element to search
int index = binarySearch(arr, key);
if (index == -1) {
System.out.println("key element not found");
}
else {
System.out.println("key element found at index :" + index);
}
}
}