59 lines
1.6 KiB
C++
59 lines
1.6 KiB
C++
|
/*
|
||
|
Program Description:
|
||
|
Euler's totient function (also called the Phi function) counts the number of positive integers less than n that
|
||
|
are coprime to n. That is, totient(n) is the number of m∈N such that 1≤m<n and gcd(m,n)=1.
|
||
|
You are given an integer N and are supposed to find the value of Euler toient function for N.
|
||
|
|
||
|
Constraints:
|
||
|
1 <= N <= 10^9
|
||
|
|
||
|
Approach:
|
||
|
totient(N) = N*(1 - 1/p1)*(1 - 1/p2)...*(1 - 1/pn).
|
||
|
where, p1,p2...pn are prime factors of n.
|
||
|
So, we can write the above function as,
|
||
|
totient(N) = N*[(p1-1)(p2-1)...(pn-1)/(p1*p2*p3...*pn)]
|
||
|
1)Calculate all the primefactors of N.
|
||
|
2)Calculate the numerator and denominator i.e N*(p1-1)(p2-1)...(pn-1) and (p1*p2*p3...*pn)
|
||
|
3)Divide numerator by denominator.
|
||
|
|
||
|
Time Complexity: O(NloglogN)
|
||
|
*/
|
||
|
|
||
|
#include<iostream>
|
||
|
#include<vector>
|
||
|
using namespace std;
|
||
|
|
||
|
|
||
|
vector<int>getPrimeFactors(int n) {
|
||
|
vector<int>factors;
|
||
|
if (n % 2 == 0) {
|
||
|
factors.push_back(2);
|
||
|
while (n % 2 == 0)n /= 2;
|
||
|
}
|
||
|
for (int i = 3; i * i <= n; i += 2) {
|
||
|
if (n % i == 0) {
|
||
|
factors.push_back(i);
|
||
|
while (n % i == 0)n /= i;
|
||
|
}
|
||
|
}
|
||
|
if (n > 1)factors.push_back(n);
|
||
|
return factors;
|
||
|
}
|
||
|
long long totient(int n) {
|
||
|
vector<int>primefactors = getPrimeFactors(n);
|
||
|
long long numerator = 1, denominator = 1;
|
||
|
for (auto p : primefactors) {
|
||
|
numerator *= (long long)(p - 1);
|
||
|
denominator *= (long long)p;
|
||
|
}
|
||
|
return ((long long)n * numerator) / denominator;
|
||
|
}
|
||
|
int main() {
|
||
|
|
||
|
int n;
|
||
|
cout << "Enter a number: ";
|
||
|
cin >> n;
|
||
|
cout << "Number of coprime integers are: " << totient(n) << "\n";
|
||
|
return 0;
|
||
|
}
|