DSA/algorithms/Java/Maths/nth-geek-onacci-number.java

90 lines
2.3 KiB
Java
Raw Normal View History

/** Author : Suraj Kumar
* Github : https://github.com/skmodi649
*/
/** PROBLEM DESCRIPTION :
* Geek created a random series and given a name geek-onacci series
* Given four integers a, b, b, n
* a, b, c represents the first three numbers of geek-onacci series
* Find the Nth number of the series.
* The nth number of geek-onacci series is a sum of the last three numbers (summation of N-1th, N-2th, and N-3th geek-onacci numbers)
*/
/** ALGORITHM :
* Simply use the concept of Recursion
* Define the base cases of the Recursion for n equal to 1 , 2 and 3
* Then simply use recurrence in the same way as we used it in Fibonacci series
*/
import java.util.*;
import java.lang.*;
class GFG {
public static int rec(int a,int b,int c,int n)
{
if(n==1)
return a;
else if(n==2)
return b;
else if(n==3)
return c;
else
return rec(a,b,c,n-1)+rec(a,b,c,n-2)+rec(a,b,c,n-3);
}
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
int a,b,c,n;
System.out.print("Enter the first number of Geek-onacci series : ");
a = sc.nextInt();
System.out.print("Enter the second number of Geek-onacci series : ");
b = sc.nextInt();
System.out.print("Enter the third number of Geek-onacci series : ");
c = sc.nextInt();
System.out.print("Enter the values of n : ");
n = sc.nextInt();
int val = rec(a,b,c,n);
System.out.println("Nth Geek-onacci number : "+val);
}
}
/** TEST CASES :
* Test Case 1 :
* Input : a = 1 , b = 3 , c = 2 , n = 4
* Output : 6
*
* Test Case 2 :
* Input : a = 1 , b = 3 , c = 2 , n = 5
* Output : 11
*
* Test Case 3 :
* Input : a = 1 , b = 3 , c = 2 , n = 6
* Output : 19
*/
/** Explanation for a = 1 , b = 3 , c = 2 , n = 5
* n = 5 then val = rec(1,3,2,4)+rec(1,3,2,3)+rec(1,3,2,2)
* rec(1,3,2,2) gives 3 and rec(1,3,2,3) gives 2 hence both totally give 3 + 2 = 5
* rec(1,3,2,4) is actually equal to rec(1,3,2,3)+rec(1,3,2,2)+rec(1,3,2,1) hence gives 2 + 3 + 1 = 6
* Now val = 6 + 5 = 11
* 11 will be returned as output
*/
/** Time Complexity : O(n)
* Auxiliary Space Complexity : O(1)
* Constraints : 1 <= A, B, C <= 100
* N >= 4
*/