73 lines
1.5 KiB
C++
73 lines
1.5 KiB
C++
|
/*
|
||
|
Coin Change Problem
|
||
|
You are given an infinite supply of coins of each of denominations D = {D0, D1, D2, D3, ...... Dn-1}.
|
||
|
You need to figure out the total number of ways W, in which you can make a change for Value V using coins of denominations D.
|
||
|
Note : Return 0, if change isn't possible.
|
||
|
W can be pretty large so output the answer % mod(10^9 + 7)
|
||
|
|
||
|
Input Format
|
||
|
Line 1 : Integer n i.e. total number of denominations
|
||
|
Line 2 : N integers i.e. n denomination values
|
||
|
Line 3 : Value V
|
||
|
|
||
|
Output Format
|
||
|
For each test case print the number of ways (W) % mod(10^9 +7) in new line.
|
||
|
|
||
|
Constraints:
|
||
|
1 <= N <= 10
|
||
|
1 <= V <= 5000
|
||
|
|
||
|
Approach:
|
||
|
1)sort the coins, this will reduce the time complexity.
|
||
|
2)Using every coin count the number of ways of making total value V.
|
||
|
|
||
|
Time Complexity: O(NV)
|
||
|
Space Complexity: O(V)
|
||
|
|
||
|
Input:
|
||
|
3
|
||
|
1 2 3
|
||
|
9
|
||
|
|
||
|
Output:
|
||
|
12
|
||
|
*/
|
||
|
|
||
|
#include<iostream>
|
||
|
#include<algorithm>
|
||
|
using namespace std;
|
||
|
|
||
|
const int mod = (int)1e9 + 7;
|
||
|
|
||
|
int main() {
|
||
|
|
||
|
cout<<"Enter the total number of coin denominations: ";
|
||
|
int n;
|
||
|
cin >> n;
|
||
|
int *coins = new int[n];
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
cin >> coins[i];
|
||
|
}
|
||
|
|
||
|
sort(coins, coins + n);
|
||
|
|
||
|
cout<<"Enter the target value: ";
|
||
|
int V;
|
||
|
cin >> V;
|
||
|
|
||
|
int dp[V + 1];
|
||
|
for (int i = 0; i <= V; i++)dp[i] = 0;
|
||
|
|
||
|
dp[0] = 1;
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
for (int j = coins[i]; j <= V; j++) {
|
||
|
dp[j] = (dp[j] + dp[j - coins[i]]) % mod;
|
||
|
}
|
||
|
}
|
||
|
cout << "Total number of ways to make target value are: " << dp[V] << endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|