DSA/algorithms/CPlusPlus/Dynamic-Programming/coin-change-problem.cpp

73 lines
1.5 KiB
C++
Raw Normal View History

/*
Coin Change Problem
You are given an infinite supply of coins of each of denominations D = {D0, D1, D2, D3, ...... Dn-1}.
You need to figure out the total number of ways W, in which you can make a change for Value V using coins of denominations D.
Note : Return 0, if change isn't possible.
W can be pretty large so output the answer % mod(10^9 + 7)
Input Format
Line 1 : Integer n i.e. total number of denominations
Line 2 : N integers i.e. n denomination values
Line 3 : Value V
Output Format
For each test case print the number of ways (W) % mod(10^9 +7) in new line.
Constraints:
1 <= N <= 10
1 <= V <= 5000
Approach:
1)sort the coins, this will reduce the time complexity.
2)Using every coin count the number of ways of making total value V.
Time Complexity: O(NV)
Space Complexity: O(V)
Input:
3
1 2 3
9
Output:
12
*/
#include<iostream>
#include<algorithm>
using namespace std;
const int mod = (int)1e9 + 7;
int main() {
cout<<"Enter the total number of coin denominations: ";
int n;
cin >> n;
int *coins = new int[n];
for (int i = 0; i < n; i++) {
cin >> coins[i];
}
sort(coins, coins + n);
cout<<"Enter the target value: ";
int V;
cin >> V;
int dp[V + 1];
for (int i = 0; i <= V; i++)dp[i] = 0;
dp[0] = 1;
for (int i = 0; i < n; i++) {
for (int j = coins[i]; j <= V; j++) {
dp[j] = (dp[j] + dp[j - coins[i]]) % mod;
}
}
cout << "Total number of ways to make target value are: " << dp[V] << endl;
return 0;
}