39 lines
1.5 KiB
Go
39 lines
1.5 KiB
Go
|
/*
|
||
|
Package arrays maximumSubarraySum problem
|
||
|
Input: An array of integers
|
||
|
Output: Subarray with maximum sum
|
||
|
The Strategy: Keep track of the previous encounter sum and the current element.
|
||
|
If the current element is largest than the previous sum + current element
|
||
|
then throw the previous sum and start with the current element as the largest sum.
|
||
|
Algorithm Type: Kadane's Algorithm
|
||
|
Time Complexity: O(n)
|
||
|
Dry Run :
|
||
|
[-2,1,-3,4,-1,2,1,-5,4]
|
||
|
initial := largestSum = -2 , currentSum = -2
|
||
|
i=1 -> currentSum = max(1, (-2 + 1 )) = 1 , largestSum = max(-2, 1) = 1
|
||
|
i=2 -> currentSum = max(-3, (1 + -3 )) = -2, largestSum = max(1, -2) = 1
|
||
|
i=3 -> currentSum = max(4, (-2 + 4 )) = 4 , largestSum = max(1, 4) = 4
|
||
|
i=4 -> currentSum = max(-1, (4 + -1 )) = 3 , largestSum = max(4, 3) = 4
|
||
|
i=5 -> currentSum = max(2, (3 + 2 )) = 5 , largestSum = max(4, 5) = 5
|
||
|
i=6 -> currentSum = max(1, (5 + 1 )) = 6 , largestSum = max(5, 6) = 6
|
||
|
i=7 -> currentSum = max(-5, (6 + -5 )) = 1 , largestSum = max(6, 1) = 6
|
||
|
i=8 -> currentSum = max(4, (1 + 4 )) = 5 , largestSum = max(6, 5) = 6
|
||
|
*/
|
||
|
package arrays
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
)
|
||
|
|
||
|
// To find the maximum subarray sum.
|
||
|
func maximumSubarraySum(nums []int) int {
|
||
|
maximumSum := nums[0]
|
||
|
currentSum := maximumSum
|
||
|
for i := 1; i < len(nums); i++ {
|
||
|
currentSum = int(math.Max(float64(nums[i]), float64(nums[i]+currentSum)))
|
||
|
maximumSum = int(math.Max(float64(maximumSum), float64(currentSum)))
|
||
|
}
|
||
|
|
||
|
return maximumSum
|
||
|
}
|