2022-08-17 15:20:07 +00:00
|
|
|
// Algorithm BinarySearch Iterative method
|
|
|
|
/*binarySearch(arr, x, low, high)
|
|
|
|
repeat till low = high
|
|
|
|
mid = (low + high)/2
|
|
|
|
if (x == arr[mid])
|
|
|
|
return mid
|
|
|
|
|
|
|
|
else if (x > arr[mid]) // x is on the right side
|
|
|
|
low = mid + 1
|
|
|
|
|
|
|
|
else // x is on the left side
|
|
|
|
high = mid - 1
|
|
|
|
*/
|
|
|
|
// Time Complexity : O(log(n))
|
|
|
|
|
|
|
|
public class BinarySearch {
|
|
|
|
|
|
|
|
static int binarySearch(int arr[], int key)
|
|
|
|
{
|
|
|
|
int start = 0;
|
|
|
|
int end = arr.length - 1;
|
|
|
|
|
|
|
|
while (start <= end) {
|
|
|
|
// We use (start + (end - start)/2) rather than using (start + end)/2 to avoid
|
|
|
|
// arithmetic overflow.
|
|
|
|
// Arithmetic overflow is the situation when the value of a variable increases
|
|
|
|
// beyond the maximum value of the memory location, and wraps around.
|
|
|
|
int mid = start + (end - start) / 2; // optimised way
|
|
|
|
|
|
|
|
if (arr[mid] == key)// key element is found at the middle of the array
|
|
|
|
return mid;
|
|
|
|
|
|
|
|
else if (arr[mid] < key) {// so the key lies in the right hand side of array
|
|
|
|
start = mid + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
else {// so the key lies in the left subarray
|
|
|
|
end = mid - 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// we reach here when the key element is not present
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static void main(String[] args)
|
|
|
|
{
|
|
|
|
|
|
|
|
int arr[] = { 1, 3, 4, 5, 6 };
|
|
|
|
|
|
|
|
/*
|
|
|
|
* List<ArrayList<Integer>> arr = new ArrayList<>();
|
|
|
|
* arr.add(new ArrayList<Integer>(Arrays.asList( 1, 3, 4, 5, 6 )));
|
|
|
|
*/
|
|
|
|
int key = 4; // element to search
|
|
|
|
int index = binarySearch(arr, key);
|
|
|
|
if (index == -1) {
|
|
|
|
System.out.println("key element not found");
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
System.out.println("key element found at index :" + index);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|