chore(CPlusPlus): add in-order predecessor and successor for bst (#320)

Co-authored-by: Arsenic <54987647+Arsenic-ATG@users.noreply.github.com>
pull/322/head
Rahul Rajeev Pillai 2021-05-23 22:17:25 +05:30 committed by GitHub
parent 70efa6fbfc
commit 18c60bf2d5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 195 additions and 0 deletions

View File

@ -64,6 +64,7 @@
4. [Depth first Traversal](Trees/pre-in-post-traversal.cpp) 4. [Depth first Traversal](Trees/pre-in-post-traversal.cpp)
5. [Binary Search Tree](Trees/binary-search-tree.cpp) 5. [Binary Search Tree](Trees/binary-search-tree.cpp)
6. [In order morris traversal](Trees/in-order-morris-traversal.cpp) 6. [In order morris traversal](Trees/in-order-morris-traversal.cpp)
7. [In order Predecessor and Successor](Trees/in-order-predecessor-and-successor.cpp)
# Maths # Maths
1. [Kaprekar Number](Maths/Kaprekar-number.cpp) 1. [Kaprekar Number](Maths/Kaprekar-number.cpp)

View File

@ -0,0 +1,194 @@
#include <iostream>
struct TreeNode{
TreeNode* left;
TreeNode* right;
int data;
TreeNode(const int& data): data(data), left(nullptr), right(nullptr){}
};
TreeNode* find(TreeNode* root, const int& data){
/**
* Find the node that contains the given data and
* return that node
*
* @params: `root` root/parent node of the tree
* @params: `data` data to be find in the tree
* @return: tree node that contains the data
*
* Average case Time Complexity: O(log(n))
* Worst case Time Complexity: O(n)
*
*/
if(root == nullptr) { throw std::runtime_error("Error: find() cannot find the data. The data doesn't exist."); }
else if(root->data == data) { return root; }
else if(root->data < data) { return find(root->right, data); }
else { return find(root->left, data); }
}
void Insert(TreeNode*& root, const int& data){
/**
* Create and Insert the node in the appropriate place of the tree
*
* @params: `root` root/parent node of the tree
* @params: `data` data to be inserted in the tree
* @return: void
*
* Average case Time Complexity: O(log(n))
* Worst case Time Complexity: O(n)
*
*/
if(root == nullptr) { root = new TreeNode(data); }
else if(root->data == data) { throw std::runtime_error("The node already exist. Duplicates not allowed"); }
else if(root->data < data) { Insert(root->right, data); }
else { Insert(root->left, data); }
}
TreeNode* rightmost(TreeNode* node){
/**
* Find and return the rightmost value of the sub-tree
*
* @params: `root` root/parent node of the tree
*
* @return: value of the node at the rightmost end of the sub tree
*/
if(node->right == nullptr){ return node; }
return rightmost(node->right);
}
TreeNode* predecessor(TreeNode* node, const int& data, TreeNode* value){
/**
* Find and return the previous smallest value to data
*
* @params: `node` root/parent node of the tree
* @params: `data` data to compare with
* @params: `value` holds the previous smaller value to data
*
* @return: previous smallest value to data
*/
if(node->data < data){ return predecessor(node->right, data, node); }
else if(node->data > data){ return predecessor(node->left, data, value); }
return value;
}
TreeNode* in_order_predecessor(TreeNode* root, const int& data){
/**
* Find the in-order predecessor of the given data
*
* @params: `root` root of the tree
* @params: `data` data where it's predecessor to be found
*
* @return: in-order predecessor for the given data
*/
TreeNode* node = find(root, data);
if(node->left !=nullptr){ return rightmost(node->left); }
return predecessor(root, data, nullptr);
}
TreeNode* leftmost(TreeNode* node){
/**
* Find and return the leftmost value of the sub-tree
*
* @params: `root` root/parent node of the tree
*
* @return: value of the node at the leftmost end of the sub tree
*/
if(node->left == nullptr){ return node; }
return leftmost(node->left);
}
TreeNode* successor(TreeNode* node, const int& data, TreeNode* value){
/**
* Find and return the next biggest value to data
*
* @params: `root` root/parent node of the tree
* @params: `data` data to compare with
* @params: `value` holds the next biggest value to data
*
* @return: previous smaller value to data
*/
if(node->data < data){ return successor(node->right, data, value); }
else if(node->data > data){ return successor(node->left, data, node); }
return value;
}
TreeNode* in_order_successor(TreeNode* root, const int& data){
/**
* Find the in-order successor of the given data
*
* @params: `data` data where it's predecessor to be found
* @params: `root` root of the tree for the prevSmallerAncester function
*
* @return: in-order successor for the given data
*/
TreeNode* node = find(root, data);
if(node->right !=nullptr){ return leftmost(node->right); }
return successor(root, data, nullptr);
}
void print(TreeNode* root){
/**
* Print the tree in an inorder fashion
*
* @params: `root` root/parent node of the tree
* @return: void
*/
if(root != nullptr){
print(root->left);
std::cout << root->data << " ";
print(root->right);
}
}
int main(){
TreeNode* root = nullptr;
Insert(root, 37);
Insert(root, 19);
Insert(root, 4);
Insert(root, 22);
Insert(root, 51);
Insert(root, 55);
Insert(root, 42);
Insert(root, 20);
Insert(root, 11);
Insert(root, 0);
print(root);
/*
Tree structure
37
/ \
19 51
/ \ / \
4 22 42 55
/\ /
0 11 20
OUTPUT:
0 4 11 19 20 22 37 42 51 55
*/
int value = 4;
if(in_order_predecessor(root, value)){
std::cout << "\nPredecessor of " << value << " is " << in_order_predecessor(root, value)->data << std::endl;
}
else{ std::cout << "\nNo predecessor" << std::endl; }
if(in_order_successor(root, value)){
std::cout << "Successor of " << value << " is " << in_order_successor(root, value)->data << std::endl;
}
else{ std::cout << "No successor" << std::endl; }
return 0;
}