chore: add C++ permutation and add Go contains duplicate (#441)

Co-authored-by: Ming Tsai <37890026+ming-tsai@users.noreply.github.com>
pull/445/head
Can Huynh 2021-09-01 05:51:50 -07:00 committed by GitHub
parent 2c8c9c011c
commit 2835574020
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 208 additions and 2 deletions

View File

@ -9,6 +9,7 @@
- [Multiply](bit-manipulation/multiply-bitwise.c)
- [Divide bitwise](bit-manipulation/divide-bitwise.c)
## Graphs
- [Prim's Algorithm](graphs/Prim's-algorithm.c)

View File

@ -114,3 +114,4 @@
1. [Tower of Hanoi](Recursion/towerofHanoi.cpp)
2. [Factorial](Recursion/factorial.cpp)
3. [Permutation](Recursion/permutation.cpp)

View File

@ -0,0 +1,48 @@
/*
Given an array of distinct numbers, nums
find all the possible permutations. You can return the answer in any order.
Example:
Input: nums = [1,2,3]
Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
*/
#include <iostream>
#include <vector>
using namespace std;
vector<vector<int>> permute(vector<int> &nums);
void helper(vector<int> newNum, vector<int> current, vector<vector<int>> &result);
//Input will be similar to the example above, free feel to test with any kind of input
int main(){
vector<int> nums = {1, 2, 3};
vector<vector<int>> permutations = permute(nums);
for(int i = 0 ; i < permutations.size(); i++){
for(int j = 0; j < permutations[i].size();j++){
cout<< permutations[i][j]<<" ";
}
cout<<endl;
}
}
vector<vector<int>> permute(vector<int>& nums) {
vector<vector<int>> result;
helper(nums, {}, result);
return result;
}
void helper(vector<int> newNum, vector<int> current, vector<vector<int>> &result){
if(newNum.size() == 0 && current.size() > 0){
result.push_back(current);
}else{
for(int i = 0; i < newNum.size(); i++){
vector<int> newArray;
newArray.insert(newArray.end(), newNum.begin(), newNum.begin() + i);
newArray.insert(newArray.end(), newNum.begin()+i+1, newNum.end());
vector<int> newPerms = current;
newPerms.push_back(newNum[i]);
helper(newArray, newPerms, result);
}
}
}

View File

@ -3,6 +3,8 @@
## Arrays
1. [Maximum subarray sum (Kadane's Algorithm)](arrays/maximum-subarray-sum.go)
2. [Two Sum](arrays/two-sum.go)
3. [Majority Element](arrays/majority_element.go)
4. [Contains Duplicate](arrays/contains_duplicate.go)
## Scheduling
1. [Interval Scheduling](scheduling/interval-scheduling.go)
@ -10,6 +12,7 @@
## Searching
1. [Binary Search](searching/binary-search.go)
2. [Linear Search](searching/linear-search.go)
3. [Find Minimum in Rotated Sorted Array](searching/rotated-array-search.go)
## Sorting
1. [Bubble Sort](sorting/bubble-sort.go)
@ -17,5 +20,4 @@
3. [Quicksort](sorting/quicksort.go)
## Recursion
1. [Fibonacci](recursion/fibonacci.go)
1. [Fibonacci](recursion/fibonacci.go)

View File

@ -0,0 +1,33 @@
package arrays
import("fmt")
/*
Given an integer array nums,
return true if any value appears at least twice in the array, and return false if every element is distinct.
Example:
Input: nums = [1, 2, 3, 1]
Output: true
Time: O(n)
Space: O(n)
*/
func containsDuplicate(nums []int) bool {
dictionary := make(map[int]int)
for _, num := range(nums){
if _, found := dictionary[num]; found{
return true;
}else{
dictionary[num] = 1
}
}
return false;
}
func runContainDuplicate(){
nums := []int{1,2,3,1}
hasDuplicate := containsDuplicate(nums)
fmt.Printf("Contain Duplicate %t\n", hasDuplicate)
}

View File

@ -0,0 +1,33 @@
package arrays
import ("fmt")
/*
Given an array nums of size n, return the majority element.
The majority element appears more than n/2 times
Time: O(n)
Space: O(1)
*/
func majorityElement(nums []int) int {
count := 1
candidate := nums[0]
for i:= 1; i < len(nums); i++{
num := nums[i]
if count == 0{
candidate = nums[i]
count = 1
}else if num == candidate{
count++
}else if num != candidate{
count--
}
}
return candidate
}
func runmajorityElement(){
nums1 := []int{2,2,1,1,1,2,2}
target := majorityElement(nums1)
fmt.Printf("Majority Element is %d\n", target)
}

View File

@ -0,0 +1,43 @@
package recursion
import "fmt"
/*
Time: O(2^n)
Space: O(n) - call stack
*/
func fibonacci_using_recursion(n int) int {
if n == 2{
return 1
}
if n == 1{
return 0;
}
return fibonacci_using_recursion(n-1) + fibonacci_using_recursion(n-2)
}
/*
Time: O(N)
Space: O(1)
*/
func fibonacci_using_constant_space(n int) int{
first:= 0
second:= 1
for i := 3; i<= n; i++{
next:= first + second
first = second
second = next
}
if n > 1{
return second
}
return first // this handles n == 1 or n == 0 case
}
func run_fibonacci(){
n := 10
recursionValue := fibonacci_using_recursion(n)
nonrecursionValue := fibonacci_using_constant_space(n)
fmt.Printf("Recursion value: %d\n", recursionValue)
fmt.Printf("Non-recursion value: %d\n", nonrecursionValue)
}

View File

@ -0,0 +1,45 @@
package searching
import "fmt"
/*
Find the minimum element in the rotated sorted array(ascending order).
An array [a[0], a[1], a[2], ..., a[n-1]] after 1 rotation will be [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
All elements are unique
*/
func findMin(nums []int) int {
if len(nums) == 1 || nums[0] < nums[len(nums)-1]{
return nums[0]
}
front, back := 0, len(nums) -1
for front <= back {
mid := (front+back) / 2
if nums[mid] > nums[mid+1]{
return nums[mid+1]
}else if nums[mid] < nums[mid-1]{
return nums[mid]
}
if nums[mid] > nums[0]{
front = mid + 1
}else if nums[mid] < nums[0]{
back = mid - 1
}
}
return 0
}
//I will hard-code the input for now but feel free to modify
func runFindMin(){
nums1 := []int{4,5,6,7,8,0,1,2}
result1 := findMin(nums1)
fmt.Println(result1) // should print 0
nums2 := []int{1,2,3,4,5,6,7,8}
result2 := findMin(nums2)
fmt.Println(result2) // should print 1
}