Add String Search Algorithms in Java & C++ (#55)

* Add string searching algorithms

* Update kmp.cpp

* Update README.md
pull/57/head^2
Amisha Mohapatra 2021-02-02 21:32:30 +05:30 committed by GitHub
parent 445a57d57b
commit 455bb11a96
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 352 additions and 1 deletions

View File

@ -1,9 +1,16 @@
# String operations
# String Algorithms
### C or C++
1. [Palindrome Check](c-or-cpp/palindrome.c)
2. [All subsequences](c-or-cpp/sequence.cpp)
3. [KMP String Searching](c-or-cpp/kmp.cpp)
4. [Rabin Karp String Searching](c-or-cpp/rabin-karp.cpp)
### C#
You could use any online IDE (for an example [.net Finddle](https://dotnetfiddle.net/)) to test them.
@ -18,3 +25,18 @@ You could use any online IDE (for an example [.net Finddle](https://dotnetfiddle
1. [Palindrome Check](java/palindrome.java)
2. [All subsequences](java/sequence.java)
3. [KMP String Searching](java/kmp.cpp)
4. [Rabin Karp String Searching](java/rabin-karp.cpp)

View File

@ -0,0 +1,90 @@
#include <bits/stdc++.h>
void computeLPSArray(char* pat, int M, int* lps);
// Prints occurrences of pat[] int txt[]
void KMPSearch(char* pat, char* txt)
{
int M = strlen(pat);
int N = strlen(txt);
// create lps[] that will hold the longest prefix suffix
// values for pattern
int lps[M];
// Preprocess the pattern (calculate lps[] array)
computeLPSArray(pat, M, lps);
int i = 0; // index for txt[]
int j = 0; // index for pat[]
bool f = 1;//flag to indicate pattern not found
while (i < N) {
if (pat[j] == txt[i]) {
j++;
i++;
}
if (j == M) {
printf("Found pattern at index %d\n", i - j);
f=0;
j = lps[j - 1];
}
// mismatch after j matches
else if (i < N && pat[j] != txt[i]) {
// Do not match lps[0..lps[j-1]] characters,
// they will match anyway
if (j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
if(f)
printf("Pattern is not found");
}
// Fills lps[] for given patttern pat[0..M-1]
void computeLPSArray(char* pat, int M, int* lps)
{
// length of the previous longest prefix suffix
int len = 0;
lps[0] = 0; // lps[0] is always 0
// the loop calculates lps[i] for i = 1 to M-1
int i = 1;
while (i < M) {
if (pat[i] == pat[len]) {
len++;
lps[i] = len;
i++;
}
else // (pat[i] != pat[len])
{
// This is tricky. Consider the example.
// AAACAAAA and i = 7. The idea is similar
// to search step.
if (len != 0) {
len = lps[len - 1];
// Also, note that we do not increment
// i here
}
else // if (len == 0)
{
lps[i] = 0;
i++;
}
}
}
}
// Driver program to test above function
int main()
{
char txt[] = "ABABDABACDABABCABAB";
char pat[] = "ABABCABAB";
KMPSearch(pat, txt);
return 0;
}

View File

@ -0,0 +1,79 @@
#include <bits/stdc++.h>
using namespace std;
// d is the number of characters in the input alphabet
#define d 256
/* pat -> pattern
txt -> text
q -> A prime number
*/
void search(char pat[], char txt[], int q)
{
int M = strlen(pat);
int N = strlen(txt);
int i, j;
int p = 0; // hash value for pattern
int t = 0; // hash value for txt
int h = 1;
// The value of h would be "pow(d, M-1)%q"
for (i = 0; i < M - 1; i++)
h = (h * d) % q;
// Calculate the hash value of pattern and first
// window of text
for (i = 0; i < M; i++)
{
p = (d * p + pat[i]) % q;
t = (d * t + txt[i]) % q;
}
// Slide the pattern over text one by one
for (i = 0; i <= N - M; i++)
{
// Check the hash values of current window of text
// and pattern. If the hash values match then only
// check for characters on by one
if ( p == t )
{
/* Check for characters one by one */
for (j = 0; j < M; j++)
{
if (txt[i+j] != pat[j])
break;
}
// if p == t and pat[0...M-1] = txt[i, i+1, ...i+M-1]
if (j == M)
cout<<"Pattern found at index "<< i<<endl;
}
// Calculate hash value for next window of text: Remove
// leading digit, add trailing digit
if ( i < N-M )
{
t = (d*(t - txt[i]*h) + txt[i+M])%q;
// We might get negative value of t, converting it
// to positive
if (t < 0)
t = (t + q);
}
}
}
/* Driver code */
int main()
{
char txt[] = "ABCAMCABAMMAM";
char pat[] = "AM";
// A prime number
int q = 101;
// Function Call
search(pat, txt, q);
return 0;
}

View File

@ -0,0 +1,82 @@
class KMP_String_Matching {
void KMPSearch(String pat, String txt)
{
int M = pat.length();
int N = txt.length();
// create lps[] that will hold the longest
// prefix suffix values for pattern
int lps[] = new int[M];
int j = 0; // index for pat[]
// Preprocess the pattern (calculate lps[]
// array)
computeLPSArray(pat, M, lps);
int i = 0; // index for txt[]
while (i < N) {
if (pat.charAt(j) == txt.charAt(i)) {
j++;
i++;
}
if (j == M) {
System.out.println("Found pattern "
+ "at index " + (i - j));
j = lps[j - 1];
}
// mismatch after j matches
else if (i < N && pat.charAt(j) != txt.charAt(i)) {
// Do not match lps[0..lps[j-1]] characters,
// they will match anyway
if (j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
}
void computeLPSArray(String pat, int M, int lps[])
{
// length of the previous longest prefix suffix
int len = 0;
int i = 1;
lps[0] = 0; // lps[0] is always 0
// the loop calculates lps[i] for i = 1 to M-1
while (i < M) {
if (pat.charAt(i) == pat.charAt(len)) {
len++;
lps[i] = len;
i++;
}
else // (pat[i] != pat[len])
{
// This is tricky. Consider the example.
// AAACAAAA and i = 7. The idea is similar
// to search step.
if (len != 0) {
len = lps[len - 1];
// Also, note that we do not increment
// i here
}
else // if (len == 0)
{
lps[i] = len;
i++;
}
}
}
}
// Driver program to test above function
public static void main(String args[])
{
String txt = "ABABDABACDABABCABAB";
String pat = "ABABCABAB";
new KMP_String_Matching().KMPSearch(pat, txt);
}
}
// This code has been contributed by Amit Khandelwal.

View File

@ -0,0 +1,78 @@
public class Main
{
// d is the number of characters in the input alphabet
public final static int d = 256;
/* pat -> pattern
txt -> text
q -> A prime number
*/
static void search(String pat, String txt, int q)
{
int M = pat.length();
int N = txt.length();
int i, j;
int p = 0; // hash value for pattern
int t = 0; // hash value for txt
int h = 1;
// The value of h would be "pow(d, M-1)%q"
for (i = 0; i < M-1; i++)
h = (h*d)%q;
// Calculate the hash value of pattern and first
// window of text
for (i = 0; i < M; i++)
{
p = (d*p + pat.charAt(i))%q;
t = (d*t + txt.charAt(i))%q;
}
// Slide the pattern over text one by one
for (i = 0; i <= N - M; i++)
{
// Check the hash values of current window of text
// and pattern. If the hash values match then only
// check for characters on by one
if ( p == t )
{
/* Check for characters one by one */
for (j = 0; j < M; j++)
{
if (txt.charAt(i+j) != pat.charAt(j))
break;
}
// if p == t and pat[0...M-1] = txt[i, i+1, ...i+M-1]
if (j == M)
System.out.println("Pattern found at index " + i);
}
// Calculate hash value for next window of text: Remove
// leading digit, add trailing digit
if ( i < N-M )
{
t = (d*(t - txt.charAt(i)*h) + txt.charAt(i+M))%q;
// We might get negative value of t, converting it
// to positive
if (t < 0)
t = (t + q);
}
}
}
/* Driver Code */
public static void main(String[] args)
{
String txt = "ABCAMCABAMMAM";
String pat = "AM";
// A prime number
int q = 101;
// Function Call
search(pat, txt, q);
}
}