added stack implementation and the standard problems on stacks in java (#174)
* added stack implementation and some standard problems on stacks in java * Update stacks/JAVA/The_Stock_Span_Problem.java Co-authored-by: Christian Clauss <cclauss@me.com> * Update stacks/JAVA/The_Stock_Span_Problem.java Co-authored-by: Christian Clauss <cclauss@me.com> * all the suggestions addressed * comments wrapped,Thanks for the suggestion. * Update The_Stock_Span_Problem.java * folder renamed * renamed files * Delete Balanced_Paranthesis.java * Delete The_Stock_Span_Problem.java * Delete stack.java Co-authored-by: Christian Clauss <cclauss@me.com>pull/182/head
parent
0a9135b5b3
commit
4d5176223f
|
@ -3,3 +3,9 @@
|
|||
### C or C++
|
||||
|
||||
1. [Balanced Parenthesis](c-or-cpp/balanced-parenthesis.cpp)
|
||||
|
||||
### Java
|
||||
|
||||
1. [Stack Implementation](Java/stack.java)
|
||||
2. [Balanced Parenthesis](Java/Balanced_Paranthesis.java)
|
||||
3. [Stock Span Problem](Java/The_Stock_Span_Problem.java)
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
|
||||
|
||||
import java.util.Iterator;
|
||||
import java.util.Stack;
|
||||
import java.util.Vector;
|
||||
|
||||
class Balanced_Paranthesis {
|
||||
|
||||
public void problem(String input_string){
|
||||
|
||||
Vector<String> output = new Vector<>();
|
||||
|
||||
Stack<Character> sta = new Stack<>();
|
||||
|
||||
for(int i = 0;i < input_string.length();i++){
|
||||
for (int j = 0; j <= i; j++){
|
||||
String sub_s = input_string.substring(j,i+1);
|
||||
char[] sub = sub_s.toCharArray();
|
||||
int no_of_left_paranthesis = 0;
|
||||
int no_of_right_paranthesis = 0;
|
||||
for (int k = 0;k < sub_s.length();k++){
|
||||
if(sub[k] == '('){
|
||||
no_of_left_paranthesis = no_of_left_paranthesis + 1;
|
||||
sta.push('(');
|
||||
}
|
||||
if(sub[k] == ')'){
|
||||
no_of_right_paranthesis = no_of_right_paranthesis + 1;
|
||||
sta.pop();
|
||||
}
|
||||
|
||||
if (sub_s.length() % 2 == 0 && no_of_left_paranthesis == no_of_right_paranthesis && sta.isEmpty()){
|
||||
output.add(sub_s);
|
||||
}
|
||||
else{
|
||||
while (!sta.isEmpty()){
|
||||
sta.pop();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int length = 0;
|
||||
if (output.size() == 0){
|
||||
System.out.println(length + " ");
|
||||
}
|
||||
else{
|
||||
int max_len = 0;
|
||||
String long_Str = "";
|
||||
|
||||
for(int s = 0;s < output.size();s++){
|
||||
if (output.get(s).length() > max_len){
|
||||
max_len = output.get(s).length();
|
||||
long_Str = output.get(s);
|
||||
}
|
||||
}
|
||||
System.out.println("Maximum length of string : " + max_len + "and the string is : " + long_Str);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class Main {
|
||||
|
||||
public static void main(String[] args){
|
||||
Balanced_Paranthesis bal = new Balanced_Paranthesis();
|
||||
bal.problem("((()))");
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,93 @@
|
|||
|
||||
|
||||
class stack {
|
||||
public int Max;
|
||||
public int Top;
|
||||
public int[] stack;
|
||||
|
||||
public stack(int Max){
|
||||
this.Max = Max;
|
||||
stack = new int[Max];
|
||||
Top = -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* if the stack is empty then always the top will be -1
|
||||
* so this should return a boolean if value of top < 1 then returns true which means
|
||||
* stack is empty.
|
||||
*/
|
||||
public boolean isEmpty(){
|
||||
return (Top < 0);
|
||||
}
|
||||
|
||||
public int size(){
|
||||
return (Top+1);
|
||||
}
|
||||
|
||||
public void push(int x){
|
||||
if (size() >= Max){
|
||||
System.out.println("Stack Overflow");
|
||||
}
|
||||
else{
|
||||
Top = Top + 1;
|
||||
stack[Top] = x;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* pop function pops out the top element in the queue
|
||||
* returns the element that is popped out of the queue
|
||||
*/
|
||||
public int pop(){
|
||||
if (size() == 0){
|
||||
System.out.println("Stack Empty Exception");
|
||||
}
|
||||
else {
|
||||
/**
|
||||
* the top element in the stack will be popped out from the stack
|
||||
*/
|
||||
int popped_element = stack[Top];
|
||||
Top = Top - 1;
|
||||
return popped_element;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
public int top(){
|
||||
if(isEmpty()){
|
||||
System.out.println("Stack Empty Exception");
|
||||
}
|
||||
else{
|
||||
return stack[Top];
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
public void PrintStack(){
|
||||
if (isEmpty()){
|
||||
System.out.println("Empty");
|
||||
}
|
||||
else{
|
||||
for(int i = 0;i < size();i++){
|
||||
System.out.print(stack[i] + " ");
|
||||
}
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
class Main {
|
||||
|
||||
public static void main(String[] args){
|
||||
max = 1000;
|
||||
stack object = new stack(max);
|
||||
object.push(1);
|
||||
object.push(2);
|
||||
object.push(3);
|
||||
object.pop();
|
||||
object.top();
|
||||
object.PrintStack();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -0,0 +1,98 @@
|
|||
|
||||
|
||||
import java.lang.reflect.Array;
|
||||
import java.util.Arrays;
|
||||
import java.util.Stack ;
|
||||
|
||||
/**
|
||||
* Problem statement :
|
||||
* The stock span problem is a financial problem where we have a series of n daily price quotes for a stock
|
||||
* and we need to calculate span of stock’s price for all n days.
|
||||
* The span Si of the stock’s price on a given day i is defined as the maximum number of consecutive days just before the given day,
|
||||
* for which the price of the stock on
|
||||
* the current day is less than or equal to its price on the given day.
|
||||
* For example, if an array of 7 days prices is given as {100, 80, 60, 70, 60, 75, 85}, then the span values for corresponding
|
||||
* 7 days are {1, 1, 1, 2, 1, 4, 6}
|
||||
*/
|
||||
class The_Stock_Span_Problem extends stack{
|
||||
|
||||
public The_Stock_Span_Problem(int Max) {
|
||||
super(Max);
|
||||
}
|
||||
|
||||
/**
|
||||
* this problem is being solved with stack abstract data type.
|
||||
*/
|
||||
public void problem(int[] price,int n,int[] span){
|
||||
stack st = new stack(Max);
|
||||
st.push(0);
|
||||
|
||||
//span of the first day is always going to be 1
|
||||
span[0] = 1;
|
||||
|
||||
|
||||
for (int i = 1;i < n;i ++){
|
||||
span[i] = 1;
|
||||
st.PrintStack();
|
||||
while(!st.isEmpty() && price[st.top()] <= price[i]){
|
||||
st.pop();
|
||||
}
|
||||
|
||||
if (st.isEmpty()){
|
||||
span[i] = i + 1;
|
||||
}
|
||||
else{
|
||||
span[i] = i - st.top();
|
||||
}
|
||||
st.push(i);
|
||||
}
|
||||
printArray(span);
|
||||
|
||||
}
|
||||
|
||||
public void printArray(int[] span){
|
||||
System.out.println("The span of the stock array :" + Arrays.toString(span));
|
||||
}
|
||||
|
||||
/**
|
||||
* This is a different approach that has slightly higher time complexity than the approach used above
|
||||
* Both the methods are awesome and star struck but...xD
|
||||
*/
|
||||
public void alternate_approach(int[] price,int n,int[] span){
|
||||
|
||||
Stack<Integer> sta = new Stack<>();
|
||||
|
||||
span[0] = 1;
|
||||
|
||||
for (int i = 1;i < n;i++){
|
||||
for (int j = 0;j < i;j++){
|
||||
sta.push(j);
|
||||
}
|
||||
|
||||
while(!sta.isEmpty() && price[sta.peek()] <= price[i]){
|
||||
sta.pop();
|
||||
}
|
||||
if (sta.isEmpty()){
|
||||
span[i] = i + 1;
|
||||
}
|
||||
else{
|
||||
span[i] = i - sta.peek();
|
||||
}
|
||||
sta.clear();
|
||||
}
|
||||
printArray(span);
|
||||
}
|
||||
}
|
||||
|
||||
class Main {
|
||||
|
||||
//to test the span stock problem
|
||||
public static void main(String[] args){
|
||||
int[] price = { 10, 4, 5, 90, 120, 80 };
|
||||
int n = price.length;
|
||||
int[] span = new int[n];
|
||||
|
||||
The_Stock_Span_Problem prob = new The_Stock_Span_Problem(1000);
|
||||
prob.alternate_approach(price,n,span);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue