Add doubly, circular Linked List, and kruskal graphs (#72)
* Code for inserting elements in doubly linked list * Circular linked list added * Graphs Section added * README updatedpull/75/head
parent
8c1cb2095f
commit
4d57584f7a
|
@ -0,0 +1,7 @@
|
|||
# Graphs
|
||||
|
||||
### C or C++
|
||||
|
||||
1. [Kruskal Algorithm](c-or-cpp/kruskal-algorithm.cpp)
|
||||
|
||||
|
|
@ -0,0 +1,173 @@
|
|||
//Graph Kruskal algorithm
|
||||
#include <bits/stdc++.h>
|
||||
using namespace std;
|
||||
|
||||
class Edge {
|
||||
public:
|
||||
int src, dest, weight;
|
||||
};
|
||||
|
||||
class Graph {
|
||||
public:
|
||||
|
||||
int V, E;
|
||||
Edge* edge;
|
||||
};
|
||||
|
||||
// Creates a graph with V vertices and E edges
|
||||
Graph* createGraph(int V, int E)
|
||||
{
|
||||
Graph* graph = new Graph;
|
||||
graph->V = V;
|
||||
graph->E = E;
|
||||
|
||||
graph->edge = new Edge[E];
|
||||
|
||||
return graph;
|
||||
}
|
||||
|
||||
// A structure to represent a subset for union-find
|
||||
class subset {
|
||||
public:
|
||||
int parent;
|
||||
int rank;
|
||||
};
|
||||
|
||||
|
||||
int find(subset subsets[], int i)
|
||||
{
|
||||
// find root and make root as parent of i
|
||||
// (path compression)
|
||||
if (subsets[i].parent != i)
|
||||
subsets[i].parent
|
||||
= find(subsets, subsets[i].parent);
|
||||
|
||||
return subsets[i].parent;
|
||||
}
|
||||
|
||||
// A function that does union of two sets of x and y
|
||||
// (uses union by rank)
|
||||
void Union(subset subsets[], int x, int y)
|
||||
{
|
||||
int xroot = find(subsets, x);
|
||||
int yroot = find(subsets, y);
|
||||
|
||||
// Attach smaller rank tree under root of high
|
||||
// rank tree (Union by Rank)
|
||||
if (subsets[xroot].rank < subsets[yroot].rank)
|
||||
subsets[xroot].parent = yroot;
|
||||
else if (subsets[xroot].rank > subsets[yroot].rank)
|
||||
subsets[yroot].parent = xroot;
|
||||
|
||||
// If ranks are same, then make one as root and
|
||||
// increment its rank by one
|
||||
else {
|
||||
subsets[yroot].parent = xroot;
|
||||
subsets[xroot].rank++;
|
||||
}
|
||||
}
|
||||
|
||||
// Compare two edges according to their weights.
|
||||
// Used in qsort() for sorting an array of edges
|
||||
int myComp(const void* a, const void* b)
|
||||
{
|
||||
Edge* a1 = (Edge*)a;
|
||||
Edge* b1 = (Edge*)b;
|
||||
return a1->weight > b1->weight;
|
||||
}
|
||||
|
||||
// The main function to construct MST using Kruskal's
|
||||
// algorithm
|
||||
void KruskalMST(Graph* graph)
|
||||
{
|
||||
int V = graph->V;
|
||||
Edge result[V]; // Tnis will store the resultant MST
|
||||
int e = 0; // An index variable, used for result[]
|
||||
int i = 0;
|
||||
|
||||
|
||||
qsort(graph->edge, graph->E, sizeof(graph->edge[0]),
|
||||
myComp);
|
||||
|
||||
// Allocate memory for creating V ssubsets
|
||||
subset* subsets = new subset[(V * sizeof(subset))];
|
||||
|
||||
// Create V subsets with single elements
|
||||
for (int v = 0; v < V; ++v)
|
||||
{
|
||||
subsets[v].parent = v;
|
||||
subsets[v].rank = 0;
|
||||
}
|
||||
|
||||
while (e < V - 1 && i < graph->E)
|
||||
{
|
||||
|
||||
Edge next_edge = graph->edge[i++];
|
||||
|
||||
int x = find(subsets, next_edge.src);
|
||||
int y = find(subsets, next_edge.dest);
|
||||
|
||||
|
||||
if (x != y) {
|
||||
result[e++] = next_edge;
|
||||
Union(subsets, x, y);
|
||||
}
|
||||
// Else discard the next_edge
|
||||
}
|
||||
|
||||
|
||||
cout << "Following are the edges in the "
|
||||
"MST\n";
|
||||
int minimumCost = 0;
|
||||
for (i = 0; i < e; ++i)
|
||||
{
|
||||
cout << result[i].src << " -- " << result[i].dest
|
||||
<< " == " << result[i].weight << endl;
|
||||
minimumCost = minimumCost + result[i].weight;
|
||||
}
|
||||
cout << "Minimum Cost Spanning Tree: " << minimumCost
|
||||
<< endl;
|
||||
}
|
||||
|
||||
// Driver code
|
||||
int main()
|
||||
{
|
||||
|
||||
|
||||
int V = 4; // Number of vertices in graph
|
||||
int E = 5; // Number of edges in graph
|
||||
Graph* graph = createGraph(V, E);
|
||||
|
||||
// add edge 0-1
|
||||
graph->edge[0].src = 0;
|
||||
graph->edge[0].dest = 1;
|
||||
graph->edge[0].weight = 10;
|
||||
|
||||
// add edge 0-2
|
||||
graph->edge[1].src = 0;
|
||||
graph->edge[1].dest = 2;
|
||||
graph->edge[1].weight = 6;
|
||||
|
||||
// add edge 0-3
|
||||
graph->edge[2].src = 0;
|
||||
graph->edge[2].dest = 3;
|
||||
graph->edge[2].weight = 5;
|
||||
|
||||
// add edge 1-3
|
||||
graph->edge[3].src = 1;
|
||||
graph->edge[3].dest = 3;
|
||||
graph->edge[3].weight = 15;
|
||||
|
||||
// add edge 2-3
|
||||
graph->edge[4].src = 2;
|
||||
graph->edge[4].dest = 3;
|
||||
graph->edge[4].weight = 4;
|
||||
|
||||
|
||||
|
||||
KruskalMST(graph);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
@ -9,6 +9,10 @@
|
|||
|
||||
3. [Circular Linked List](c-or-cpp/circular.cpp)
|
||||
|
||||
2. [Doubly Linked List](c-or-cpp/doubly.cpp)
|
||||
|
||||
3. [Circular Linked List](c-or-cpp/circular.cpp)
|
||||
|
||||
### Java
|
||||
|
||||
1. [Singly Linked List](java/singly.cpp)
|
||||
|
|
Loading…
Reference in New Issue