Add doubly, circular Linked List, and kruskal graphs (#72)

* Code for inserting elements in doubly linked list

* Circular linked list added

* Graphs Section added

* README updated
pull/75/head
Vinayak Ravi Joshi 2021-02-12 01:55:00 +05:30 committed by GitHub
parent 8c1cb2095f
commit 4d57584f7a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 184 additions and 0 deletions

7
graphs/README.md 100644
View File

@ -0,0 +1,7 @@
# Graphs
### C or C++
1. [Kruskal Algorithm](c-or-cpp/kruskal-algorithm.cpp)

View File

@ -0,0 +1,173 @@
//Graph Kruskal algorithm
#include <bits/stdc++.h>
using namespace std;
class Edge {
public:
int src, dest, weight;
};
class Graph {
public:
int V, E;
Edge* edge;
};
// Creates a graph with V vertices and E edges
Graph* createGraph(int V, int E)
{
Graph* graph = new Graph;
graph->V = V;
graph->E = E;
graph->edge = new Edge[E];
return graph;
}
// A structure to represent a subset for union-find
class subset {
public:
int parent;
int rank;
};
int find(subset subsets[], int i)
{
// find root and make root as parent of i
// (path compression)
if (subsets[i].parent != i)
subsets[i].parent
= find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high
// rank tree (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and
// increment its rank by one
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
Edge* a1 = (Edge*)a;
Edge* b1 = (Edge*)b;
return a1->weight > b1->weight;
}
// The main function to construct MST using Kruskal's
// algorithm
void KruskalMST(Graph* graph)
{
int V = graph->V;
Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0;
qsort(graph->edge, graph->E, sizeof(graph->edge[0]),
myComp);
// Allocate memory for creating V ssubsets
subset* subsets = new subset[(V * sizeof(subset))];
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
while (e < V - 1 && i < graph->E)
{
Edge next_edge = graph->edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
cout << "Following are the edges in the "
"MST\n";
int minimumCost = 0;
for (i = 0; i < e; ++i)
{
cout << result[i].src << " -- " << result[i].dest
<< " == " << result[i].weight << endl;
minimumCost = minimumCost + result[i].weight;
}
cout << "Minimum Cost Spanning Tree: " << minimumCost
<< endl;
}
// Driver code
int main()
{
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
Graph* graph = createGraph(V, E);
// add edge 0-1
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 10;
// add edge 0-2
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 6;
// add edge 0-3
graph->edge[2].src = 0;
graph->edge[2].dest = 3;
graph->edge[2].weight = 5;
// add edge 1-3
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 15;
// add edge 2-3
graph->edge[4].src = 2;
graph->edge[4].dest = 3;
graph->edge[4].weight = 4;
KruskalMST(graph);
return 0;
}

View File

@ -9,6 +9,10 @@
3. [Circular Linked List](c-or-cpp/circular.cpp)
2. [Doubly Linked List](c-or-cpp/doubly.cpp)
3. [Circular Linked List](c-or-cpp/circular.cpp)
### Java
1. [Singly Linked List](java/singly.cpp)