diff --git a/algorithms/Python/README.md b/algorithms/Python/README.md index 7efde748..dd67add3 100644 --- a/algorithms/Python/README.md +++ b/algorithms/Python/README.md @@ -68,3 +68,4 @@ ## Trees 1. [Binary Tree](trees/binary_tree.py) +2. [Binary Search Tree](trees/binary-search-tree.py) diff --git a/algorithms/Python/trees/binary-search-tree.py b/algorithms/Python/trees/binary-search-tree.py new file mode 100644 index 00000000..6b6d4c93 --- /dev/null +++ b/algorithms/Python/trees/binary-search-tree.py @@ -0,0 +1,236 @@ +# author: @hashfx + +# Binary Tree Data Structure +# Data is stored in hierarchical form where a parent node can have at most 2 child nodes +# +# A +# ___|___ +# B C +# ___|___ +# D E +# / \ \ +# F G H +# +# Here, A is "ROOT NODE" and B, C are "CHILD NODE" +# (B-D-F-G), (B-E-H) is a sub-tree +# B is 'ROOT NODE' for D, E & D is 'ROOT NODE' for F, G & E is root node for H +# Those nodes [C, F, G, H] who do not have any child node are "LEAF NODE" +# +# Rules for Binary Search Tree: +# > All nodes are unique +# > Right sub-tree > Left sub-tree ===== Left sub-tree < Right sub-tree +# [Value(BA), Value(DB), Value(FD), Value(H>E)] +# > One parent node can not have more than 2 child nodes +# > Elements are not duplicated +# Searching in Binary Tree: +# Suppose we want to search E in the Tree: +# > At Root Node(A) :: IF A>E THEN element would be at Left sub-Tree +# > At Left sub-Tree(B) :: IF B4->2->1] {Search completed in 3 iterations} +# 3 compared to 8 is log(2)8 = 2 +# Search Complexity : O(log n) +# Insertion Complexity : O(log n) +# +# +# Types of BST: +# Breadth First Search +# +# +# Depth First Search +# order here means base node +# > In Order Traversal : first visit left sub-tree >> root node >> right sub-tree [F-D-G-B-H-E-A-C] +# {Root node in between left and right tree} +# > Pre Order Traversal : root node >> left sub-tree >> right sub-tree [A-B-D-F-G-E-H-C] +# {Root node before left and right tree} +# > Post Order Traversal : left sub-tree >> right sub-tree >> root node [F-G-D-H-E-B-C-A] +# {Root node after left and right tree} + + +class Node: + # constructor + def __init__(self, data): + self.data = data + self.left = None + self.right = None + + + def add_child(self, data): + """Insert data as child in Tree""" + + # checking if entered data is already present + if data == self.data: + return + + # if tree is empty means no node(root) at tree else incoming data will be treated as node(root(tree)) + if self.data: + ''' check if data(right) > data(left) & node(parent)''' + if data < self.data: # data is smaller than data of node(parent) + if self.left is None: # and if no element is present at left of node + self.left = Node(data) # insert data at left + else: + self.left.add_child(data) # consider node(left) {current node} as node(root) + + elif data > self.data: # if data is greater than root node + if self.right is None: # and if no data(right) is None + self.right = Node(data) # insert data at right of node(parent) + else: # if data is already present at right of node + self.right.add_child(data) # consider node(right) {current node} as node(root) + else: + self.data = data # if tree is empty; treat incoming data as root of the tree + + + def InOrderTraversal(self): + elements = [] # list to be filled with all elements of BST in specific order + + # In-order-Traversal : left sub-tree >> root node >> right sub-tree + if self.left: # put elements of left sub-tree in list[elements] + elements += self.left.InOrderTraversal() + + elements.append(self.data) # put root node data in list[elements] + + if self.right: # put elements of right sub-tree in list[elements] + elements += self.right.InOrderTraversal() + + return elements # return list[elements] + + + def PreOrderTraversal(self): + elements = [] + + # Pre-Order-Traversal : root node >> left sub-tree >> right sub-tree + + elements.append(self.data) # put root node data in list[elements] + + if self.left: # put elements of left sub-tree in list[elements] + elements += self.left.InOrderTraversal() + + if self.right: # put elements of right sub-tree in list[elements] + elements += self.right.InOrderTraversal() + + return elements # return list[elements] + + def PostOrderTraversal(self): + elements = [] + + # Pre-Order-Traversal : left sub-tree >> right sub-tree >> root node + + if self.left: # put elements of left sub-tree in list[elements] + elements += self.left.InOrderTraversal() + + if self.right: # put elements of right sub-tree in list[elements] + elements += self.right.InOrderTraversal() + + elements.append(self.data) # put root node data in list[elements] + + return elements # return list[elements] + + def search(self, val): + """ Search element in binary search tree""" + if self.data == val: + return True + + if val < self.data: + # search for val in left sub-tree + if self.left: + return self.left.search(val) + else: + return False + + if val > self.data: + # search for val in right sub-tree + if self.right: + return self.right.search(val) + else: + return False + + def max(self): + '''Maximum element of tree: keep searching on right sub-tree to find maximum element ''' + if self.right is None: # leaf node + return self.data + return self.right.max() + + + def min(self): + ''' Minimum element of tree: keep searching on left sub-tree to find minimum element ''' + if self.left is None: # leaf node + return self.data + return self.left.min() + + + def delete(self, val): + if val < self.data: # search for element in left sub-tree + if self.left: # check if there is any left sub-tree + self.left = self.left.delete(val) # delete recursion + elif val > self.data: # search for element in right sub-tree + if self.right: # check if there is any right sub-tree + self.right = self.right.delete(val) # delete recursion + else: + if self.left is None and self.right is None: # if left & right sub-tree are empty + return None + if self.left is None: # right sub-tree is present but not left sub-tree + return self.right # return right sub-tree-child + if self.right is None: # left sub-tree is present but not right sub-tree + return self.right # return left sub-tree-child + + min_val = self.right.min() # find minimuum element from right sub-tree + self.data = min_val # + self.right = self.right.delete(min_val) + + return self + + + def display(self): + """ Display tree """ + if self.left: + self.left.display() # display tree(left) + print(self.data) # display node(root) + if self.right: + self.right.display() # display tree(right) + + +def build_tree(elements): + root = Node(elements[0]) + + for i in range(1, len(elements)): + root.add_child(elements[i]) + return root + + +# If build_tree() is not used +# root = Node(4) +# root.add_child(6) +# root.add_child(7) +# root.add_child(2) +# root.add_child(3) +# root.add_child(8) +# root.add_child(5) + +''' smaller elements will be displayed at left/top of root node <--> greater elements will be displayed at + right/bottom of root node ''' +# root.display() + +# main method +if __name__ == '__main__': + + # Numeric BST + num_list = [20, 18, 37, 15, 7, 5, 9, 18, 24, 0] # repeated elements are removed + list_tree = build_tree(num_list) + print(list_tree.InOrderTraversal()) # return list in sorted order + print(list_tree.PreOrderTraversal()) # return list in sorted order + print(list_tree.PostOrderTraversal()) # return list in sorted order + # list_tree.display() # display tree using display function + print(list_tree.search(20)) # True + print(list_tree.search(4)) # False + list_tree.delete(20) + print("Deleted element: ", list_tree.InOrderTraversal()) + + # String BST + country = ["India", "Australia", "France", "Japan", "Sweden"] + country_tree = build_tree(country) + print(country_tree.InOrderTraversal()) # return list in sorted order + print(country_tree.search("UK")) # False + print(country_tree.search("Japan")) # True