chore(Python): added binary search tree (#494)

pull/502/head
Harsh_f(x) 2021-09-29 18:24:48 +05:30 committed by GitHub
parent 1e53be5fed
commit 5e49928d84
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 237 additions and 0 deletions

View File

@ -68,3 +68,4 @@
## Trees ## Trees
1. [Binary Tree](trees/binary_tree.py) 1. [Binary Tree](trees/binary_tree.py)
2. [Binary Search Tree](trees/binary-search-tree.py)

View File

@ -0,0 +1,236 @@
# author: @hashfx
# Binary Tree Data Structure
# Data is stored in hierarchical form where a parent node can have at most 2 child nodes
#
# A
# ___|___
# B C
# ___|___
# D E
# / \ \
# F G H
#
# Here, A is "ROOT NODE" and B, C are "CHILD NODE"
# (B-D-F-G), (B-E-H) is a sub-tree
# B is 'ROOT NODE' for D, E & D is 'ROOT NODE' for F, G & E is root node for H
# Those nodes [C, F, G, H] who do not have any child node are "LEAF NODE"
#
# Rules for Binary Search Tree:
# > All nodes are unique
# > Right sub-tree > Left sub-tree ===== Left sub-tree < Right sub-tree
# [Value(B<A AND C>A), Value(D<B AND E>B), Value(F<D AND G>D), Value(H>E)]
# > One parent node can not have more than 2 child nodes
# > Elements are not duplicated
# Searching in Binary Tree:
# Suppose we want to search E in the Tree:
# > At Root Node(A) :: IF A>E THEN element would be at Left sub-Tree
# > At Left sub-Tree(B) :: IF B<E THEN element would be at Right of the sub-tree
#
# Significance of BST:
# With every iteration, search space is reduced by 1/2 (half)
# Let no of nodes in a tree (n) be 8 then:
# n = 8 [8->4->2->1] {Search completed in 3 iterations}
# 3 compared to 8 is log(2)8 = 2
# Search Complexity : O(log n)
# Insertion Complexity : O(log n)
#
#
# Types of BST:
# Breadth First Search
#
#
# Depth First Search
# order here means base node
# > In Order Traversal : first visit left sub-tree >> root node >> right sub-tree [F-D-G-B-H-E-A-C]
# {Root node in between left and right tree}
# > Pre Order Traversal : root node >> left sub-tree >> right sub-tree [A-B-D-F-G-E-H-C]
# {Root node before left and right tree}
# > Post Order Traversal : left sub-tree >> right sub-tree >> root node [F-G-D-H-E-B-C-A]
# {Root node after left and right tree}
class Node:
# constructor
def __init__(self, data):
self.data = data
self.left = None
self.right = None
def add_child(self, data):
"""Insert data as child in Tree"""
# checking if entered data is already present
if data == self.data:
return
# if tree is empty means no node(root) at tree else incoming data will be treated as node(root(tree))
if self.data:
''' check if data(right) > data(left) & node(parent)'''
if data < self.data: # data is smaller than data of node(parent)
if self.left is None: # and if no element is present at left of node
self.left = Node(data) # insert data at left
else:
self.left.add_child(data) # consider node(left) {current node} as node(root)
elif data > self.data: # if data is greater than root node
if self.right is None: # and if no data(right) is None
self.right = Node(data) # insert data at right of node(parent)
else: # if data is already present at right of node
self.right.add_child(data) # consider node(right) {current node} as node(root)
else:
self.data = data # if tree is empty; treat incoming data as root of the tree
def InOrderTraversal(self):
elements = [] # list to be filled with all elements of BST in specific order
# In-order-Traversal : left sub-tree >> root node >> right sub-tree
if self.left: # put elements of left sub-tree in list[elements]
elements += self.left.InOrderTraversal()
elements.append(self.data) # put root node data in list[elements]
if self.right: # put elements of right sub-tree in list[elements]
elements += self.right.InOrderTraversal()
return elements # return list[elements]
def PreOrderTraversal(self):
elements = []
# Pre-Order-Traversal : root node >> left sub-tree >> right sub-tree
elements.append(self.data) # put root node data in list[elements]
if self.left: # put elements of left sub-tree in list[elements]
elements += self.left.InOrderTraversal()
if self.right: # put elements of right sub-tree in list[elements]
elements += self.right.InOrderTraversal()
return elements # return list[elements]
def PostOrderTraversal(self):
elements = []
# Pre-Order-Traversal : left sub-tree >> right sub-tree >> root node
if self.left: # put elements of left sub-tree in list[elements]
elements += self.left.InOrderTraversal()
if self.right: # put elements of right sub-tree in list[elements]
elements += self.right.InOrderTraversal()
elements.append(self.data) # put root node data in list[elements]
return elements # return list[elements]
def search(self, val):
""" Search element in binary search tree"""
if self.data == val:
return True
if val < self.data:
# search for val in left sub-tree
if self.left:
return self.left.search(val)
else:
return False
if val > self.data:
# search for val in right sub-tree
if self.right:
return self.right.search(val)
else:
return False
def max(self):
'''Maximum element of tree: keep searching on right sub-tree to find maximum element '''
if self.right is None: # leaf node
return self.data
return self.right.max()
def min(self):
''' Minimum element of tree: keep searching on left sub-tree to find minimum element '''
if self.left is None: # leaf node
return self.data
return self.left.min()
def delete(self, val):
if val < self.data: # search for element in left sub-tree
if self.left: # check if there is any left sub-tree
self.left = self.left.delete(val) # delete recursion
elif val > self.data: # search for element in right sub-tree
if self.right: # check if there is any right sub-tree
self.right = self.right.delete(val) # delete recursion
else:
if self.left is None and self.right is None: # if left & right sub-tree are empty
return None
if self.left is None: # right sub-tree is present but not left sub-tree
return self.right # return right sub-tree-child
if self.right is None: # left sub-tree is present but not right sub-tree
return self.right # return left sub-tree-child
min_val = self.right.min() # find minimuum element from right sub-tree
self.data = min_val #
self.right = self.right.delete(min_val)
return self
def display(self):
""" Display tree """
if self.left:
self.left.display() # display tree(left)
print(self.data) # display node(root)
if self.right:
self.right.display() # display tree(right)
def build_tree(elements):
root = Node(elements[0])
for i in range(1, len(elements)):
root.add_child(elements[i])
return root
# If build_tree() is not used
# root = Node(4)
# root.add_child(6)
# root.add_child(7)
# root.add_child(2)
# root.add_child(3)
# root.add_child(8)
# root.add_child(5)
''' smaller elements will be displayed at left/top of root node <--> greater elements will be displayed at
right/bottom of root node '''
# root.display()
# main method
if __name__ == '__main__':
# Numeric BST
num_list = [20, 18, 37, 15, 7, 5, 9, 18, 24, 0] # repeated elements are removed
list_tree = build_tree(num_list)
print(list_tree.InOrderTraversal()) # return list in sorted order
print(list_tree.PreOrderTraversal()) # return list in sorted order
print(list_tree.PostOrderTraversal()) # return list in sorted order
# list_tree.display() # display tree using display function
print(list_tree.search(20)) # True
print(list_tree.search(4)) # False
list_tree.delete(20)
print("Deleted element: ", list_tree.InOrderTraversal())
# String BST
country = ["India", "Australia", "France", "Japan", "Sweden"]
country_tree = build_tree(country)
print(country_tree.InOrderTraversal()) # return list in sorted order
print(country_tree.search("UK")) # False
print(country_tree.search("Japan")) # True