enh(Java): binary search (#800)
* add Cycle-Sort.md * corrected documentation * add Cycle-Sort.md * Fixed the broken link * Added the file index for Cycle-Sort * Fixed typo * created new file for iterative binary search * created binary-search.javapull/803/merge
parent
6f19b452ea
commit
6e39b2bc60
|
@ -1,50 +1,64 @@
|
|||
// Java implementation of recursive Binary Search
|
||||
class BinarySearch {
|
||||
// Returns index of x if it is present in arr[l..r],
|
||||
// else return -1
|
||||
int binarySearch(int arr[], int l, int r, int x)
|
||||
{
|
||||
if (r >= l) {
|
||||
int mid = l + (r - l) / 2;
|
||||
//We use (l + (r - l)) rather than using (l - r) to avoid arithmetic overflow.
|
||||
//Arithmetic overflow is the situation when the value of a variable increases
|
||||
//beyond the maximum value of the memory location, and wraps around.
|
||||
|
||||
// If the element is present at the
|
||||
// middle itself
|
||||
if (arr[mid] == x)
|
||||
return mid;
|
||||
|
||||
// If element is smaller than mid, then
|
||||
// it can only be present in left subarray
|
||||
if (arr[mid] > x)
|
||||
return binarySearch(arr, l, mid - 1, x);
|
||||
|
||||
// Else the element can only be present
|
||||
// in right subarray
|
||||
return binarySearch(arr, mid + 1, r, x);
|
||||
}
|
||||
|
||||
// We reach here when element is not present
|
||||
// in array
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Driver method to test above
|
||||
public static void main(String args[])
|
||||
{
|
||||
BinarySearch ob = new BinarySearch();
|
||||
int arr[] = { 2, 3, 4, 10, 40 };
|
||||
int n = arr.length;
|
||||
int x = 10;
|
||||
int result = ob.binarySearch(arr, 0, n - 1, x);
|
||||
if (result == -1)
|
||||
System.out.println("Element not present");
|
||||
else
|
||||
System.out.println("Element found at index " + result);
|
||||
}
|
||||
}
|
||||
// Algorithm BinarySearch Iterative method
|
||||
/*binarySearch(arr, x, low, high)
|
||||
repeat till low = high
|
||||
mid = (low + high)/2
|
||||
if (x == arr[mid])
|
||||
return mid
|
||||
|
||||
else if (x > arr[mid]) // x is on the right side
|
||||
low = mid + 1
|
||||
|
||||
else // x is on the left side
|
||||
high = mid - 1
|
||||
*/
|
||||
// Time Complexity : O(log(n))
|
||||
|
||||
// For running in terminal rename this file to BinarySearch.java
|
||||
//then run the commands <javac BinarySearch.java> followed by <java BinarySearch>
|
||||
//It will generate and a BinarySearch.class file which is a file containing java bytecode that is executed by JVM.
|
||||
public class BinarySearch {
|
||||
|
||||
static int binarySearch(int arr[], int key)
|
||||
{
|
||||
int start = 0;
|
||||
int end = arr.length - 1;
|
||||
|
||||
while (start <= end) {
|
||||
// We use (start + (end - start)/2) rather than using (start + end)/2 to avoid
|
||||
// arithmetic overflow.
|
||||
// Arithmetic overflow is the situation when the value of a variable increases
|
||||
// beyond the maximum value of the memory location, and wraps around.
|
||||
int mid = start + (end - start) / 2; // optimised way
|
||||
|
||||
if (arr[mid] == key)// key element is found at the middle of the array
|
||||
return mid;
|
||||
|
||||
else if (arr[mid] < key) {// so the key lies in the right hand side of array
|
||||
start = mid + 1;
|
||||
}
|
||||
|
||||
else {// so the key lies in the left subarray
|
||||
end = mid - 1;
|
||||
}
|
||||
}
|
||||
// we reach here when the key element is not present
|
||||
return -1;
|
||||
}
|
||||
|
||||
public static void main(String[] args)
|
||||
{
|
||||
|
||||
int arr[] = { 1, 3, 4, 5, 6 };
|
||||
|
||||
/*
|
||||
* List<ArrayList<Integer>> arr = new ArrayList<>();
|
||||
* arr.add(new ArrayList<Integer>(Arrays.asList( 1, 3, 4, 5, 6 )));
|
||||
*/
|
||||
int key = 4; // element to search
|
||||
int index = binarySearch(arr, key);
|
||||
if (index == -1) {
|
||||
System.out.println("key element not found");
|
||||
}
|
||||
else {
|
||||
System.out.println("key element found at index :" + index);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue