enh(Java): binary search (#800)
* add Cycle-Sort.md * corrected documentation * add Cycle-Sort.md * Fixed the broken link * Added the file index for Cycle-Sort * Fixed typo * created new file for iterative binary search * created binary-search.javapull/803/merge
parent
6f19b452ea
commit
6e39b2bc60
|
@ -1,50 +1,64 @@
|
||||||
// Java implementation of recursive Binary Search
|
// Algorithm BinarySearch Iterative method
|
||||||
class BinarySearch {
|
/*binarySearch(arr, x, low, high)
|
||||||
// Returns index of x if it is present in arr[l..r],
|
repeat till low = high
|
||||||
// else return -1
|
mid = (low + high)/2
|
||||||
int binarySearch(int arr[], int l, int r, int x)
|
if (x == arr[mid])
|
||||||
{
|
return mid
|
||||||
if (r >= l) {
|
|
||||||
int mid = l + (r - l) / 2;
|
else if (x > arr[mid]) // x is on the right side
|
||||||
//We use (l + (r - l)) rather than using (l - r) to avoid arithmetic overflow.
|
low = mid + 1
|
||||||
//Arithmetic overflow is the situation when the value of a variable increases
|
|
||||||
//beyond the maximum value of the memory location, and wraps around.
|
else // x is on the left side
|
||||||
|
high = mid - 1
|
||||||
// If the element is present at the
|
*/
|
||||||
// middle itself
|
// Time Complexity : O(log(n))
|
||||||
if (arr[mid] == x)
|
|
||||||
return mid;
|
|
||||||
|
|
||||||
// If element is smaller than mid, then
|
|
||||||
// it can only be present in left subarray
|
|
||||||
if (arr[mid] > x)
|
|
||||||
return binarySearch(arr, l, mid - 1, x);
|
|
||||||
|
|
||||||
// Else the element can only be present
|
|
||||||
// in right subarray
|
|
||||||
return binarySearch(arr, mid + 1, r, x);
|
|
||||||
}
|
|
||||||
|
|
||||||
// We reach here when element is not present
|
|
||||||
// in array
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Driver method to test above
|
|
||||||
public static void main(String args[])
|
|
||||||
{
|
|
||||||
BinarySearch ob = new BinarySearch();
|
|
||||||
int arr[] = { 2, 3, 4, 10, 40 };
|
|
||||||
int n = arr.length;
|
|
||||||
int x = 10;
|
|
||||||
int result = ob.binarySearch(arr, 0, n - 1, x);
|
|
||||||
if (result == -1)
|
|
||||||
System.out.println("Element not present");
|
|
||||||
else
|
|
||||||
System.out.println("Element found at index " + result);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// For running in terminal rename this file to BinarySearch.java
|
public class BinarySearch {
|
||||||
//then run the commands <javac BinarySearch.java> followed by <java BinarySearch>
|
|
||||||
//It will generate and a BinarySearch.class file which is a file containing java bytecode that is executed by JVM.
|
static int binarySearch(int arr[], int key)
|
||||||
|
{
|
||||||
|
int start = 0;
|
||||||
|
int end = arr.length - 1;
|
||||||
|
|
||||||
|
while (start <= end) {
|
||||||
|
// We use (start + (end - start)/2) rather than using (start + end)/2 to avoid
|
||||||
|
// arithmetic overflow.
|
||||||
|
// Arithmetic overflow is the situation when the value of a variable increases
|
||||||
|
// beyond the maximum value of the memory location, and wraps around.
|
||||||
|
int mid = start + (end - start) / 2; // optimised way
|
||||||
|
|
||||||
|
if (arr[mid] == key)// key element is found at the middle of the array
|
||||||
|
return mid;
|
||||||
|
|
||||||
|
else if (arr[mid] < key) {// so the key lies in the right hand side of array
|
||||||
|
start = mid + 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
else {// so the key lies in the left subarray
|
||||||
|
end = mid - 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// we reach here when the key element is not present
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
public static void main(String[] args)
|
||||||
|
{
|
||||||
|
|
||||||
|
int arr[] = { 1, 3, 4, 5, 6 };
|
||||||
|
|
||||||
|
/*
|
||||||
|
* List<ArrayList<Integer>> arr = new ArrayList<>();
|
||||||
|
* arr.add(new ArrayList<Integer>(Arrays.asList( 1, 3, 4, 5, 6 )));
|
||||||
|
*/
|
||||||
|
int key = 4; // element to search
|
||||||
|
int index = binarySearch(arr, key);
|
||||||
|
if (index == -1) {
|
||||||
|
System.out.println("key element not found");
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
System.out.println("key element found at index :" + index);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue