chore(Java): add Min Heap (#576)

Co-authored-by: Ming Tsai <37890026+ming-tsai@users.noreply.github.com>
pull/563/head^2
Elena Mokeeva 2021-10-19 15:18:08 +02:00 committed by GitHub
parent d4b94e4b27
commit 72834f7a3a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 181 additions and 2 deletions

View File

@ -78,6 +78,7 @@
- [Left View of a Tree](trees/left-view.java) - [Left View of a Tree](trees/left-view.java)
- [Right View of a Tree](trees/right-view.java) - [Right View of a Tree](trees/right-view.java)
- [Zig-Zag Traversal of a Tree](trees/zig-zag-traversal.java) - [Zig-Zag Traversal of a Tree](trees/zig-zag-traversal.java)
- [Min Heap](trees/MinHeap.java)
## Backtracking ## Backtracking
- [N Queen Problem](backtracking/nqueen.java) - [N Queen Problem](backtracking/nqueen.java)

View File

@ -0,0 +1,177 @@
/*
Min-Heap is a binary tree structure such that every node in the tree will be
lesser or equal to the child node. It is used when you need quick access to
the smallest number in the array.
Time complexity to build the heap: O(n)
Time complexity to remove min: O(log(n))
Time complexity to remove all elements: O(n*log(n))
*/
import java.util.ArrayList;
import java.util.Collections;
import java.util.stream.Collectors;
public class MinHeap<T extends Comparable<? super T>> {
// Example of MinHeap usage
public static void main(String[] args) {
MinHeap<Integer> myHeap = new MinHeap<>();
// adding elements to the heap
myHeap.insert(4);
myHeap.insert(10);
myHeap.insert(2);
myHeap.insert(22);
myHeap.insert(45);
myHeap.insert(18);
System.out.println(myHeap);
// output: 2, 10, 4, 22, 45, 18
myHeap.removeMin();
System.out.println(myHeap);
// output: 4, 10, 18, 22, 45
myHeap.removeMin();
System.out.println(myHeap);
// output: 10, 22, 18, 45
myHeap.removeMin();
System.out.println(myHeap);
// output: 18, 22, 45
myHeap.removeMin();
System.out.println(myHeap);
// output: 22, 45
myHeap.removeMin();
System.out.println(myHeap);
// output: 45
myHeap.removeMin();
System.out.println(myHeap);
// output:
// (empty output)
}
// Array representing the binary tree,
// where the first element is the smallest element and the root
ArrayList<T> items;
public MinHeap() {
this.items = new ArrayList<>();
}
/*
takes index of the node as argument,
and returns the index of its parent.
Returns -1 if the element is a root.
*/
public int getIndexOfParent(int index) {
return (index == 0) ? -1 : (index - 1) / 2;
}
/*
Takes index of the node as argument,
and returns the index of its first child.
The index of its second child is greater by one
than the index of the first child.
Returns -1 if the element at given index has no children
*/
public int getIndexOfFirstChild(int index) {
int result = (index * 2) + 1;
return (result >= items.size()) ? -1 : result;
}
/* swaps the element at given index with the its parent
until the order of the heap is restored (the parent is smaller or equal)
*/
public void siftUp(int index) {
if (index == 0) return;
T element = items.get(index);
int indexOfParent = getIndexOfParent(index);
while (indexOfParent != -1 && items.get(indexOfParent).compareTo(element) > 0) {
Collections.swap(items, index, indexOfParent);
index = indexOfParent;
indexOfParent = getIndexOfParent(index);
}
}
/* swaps the element at given index with the smallest of its children
until the order of the heap is restored (both children are greater or equal)
*/
public void siftDown(int index) {
int firstChildIndex = getIndexOfFirstChild(index);
int secondChildIndex = firstChildIndex + 1;
T element = items.get(index);
/* minIndex is the index of the smallest child
minIndex is the index of the first child, if the element doesn't
have children (so firstChildIndex=-1), or if the element only has one
child, or if the first child is smaller than the second child.
minIndex is the index of the second child, if the second child
is smaller than the first child. */
int minIndex = (firstChildIndex != -1 &&
secondChildIndex < items.size() && items.get(firstChildIndex).compareTo(
items.get(secondChildIndex)) > 0) ?
secondChildIndex : firstChildIndex;
while (minIndex != -1 && element.compareTo(items.get(minIndex)) > 0) {
Collections.swap(items, minIndex, index);
index = minIndex;
firstChildIndex = getIndexOfFirstChild(index);
secondChildIndex = firstChildIndex + 1;
/* see above for explanation of minIndex */
minIndex = (firstChildIndex != -1 &&
secondChildIndex < items.size() && items.get(firstChildIndex).compareTo(
items.get(secondChildIndex)) > 0) ?
secondChildIndex : firstChildIndex;
}
}
/* Insert an element into the heap, preserving the correct order
of elements (children of a node have to be greater or equal to the node) */
public void insert(T element) {
items.add(element);
siftUp(items.size() - 1);
}
/* Remove the smallest element and return it.
The smallest element in a MinHeap
is always the root.
Correct order of elements has to be restored after removing the root.
*/
public T removeMin() {
if (items.isEmpty()) throw new IllegalStateException(
"Cannot remove an element from an empty heap!");
T result = items.get(0); //smallest element
//If the heap only has one element, no reordering needed after removing
if (items.size()==1) {
items.remove(0);
return result;
}
Collections.swap(items, 0, items.size() - 1);
items.remove(items.size() - 1);
siftDown(0);
return result;
}
public T getMin() {
return items.get(0);
}
/* Print the elements in the heap in the order they are stored
separated by , */
@Override
public String toString() {
return items.stream().map(Object::toString)
.collect(Collectors.joining(", "));
}
}

View File

@ -43,8 +43,9 @@
## Implementation ## Implementation
- [C](https://github.com/MakeContributions/DSA/blob/main/algorithms/C/tree/min-heap.c) - [C](../../../algorithms/C/tree/min-heap.c)
- [C++](https://github.com/MakeContributions/DSA/blob/main/algorithms/CPlusPlus/Trees/min-heap.cpp) - [C++](../../../algorithms/CPlusPlus/Trees/min-heap.cpp)
- [Java](../../../algorithms/Java/trees/MinHeap.java)
## Video URL ## Video URL
[Youtube Video about Heaps](https://www.youtube.com/watch?v=t0Cq6tVNRBA) [Youtube Video about Heaps](https://www.youtube.com/watch?v=t0Cq6tVNRBA)