Merge branch 'MakeContributions:main' into Arrays
commit
7e0476d351
|
@ -0,0 +1,33 @@
|
|||
#include <bits/stdc++.h>
|
||||
using namespace std;
|
||||
|
||||
//Function to check whether a number is Odd or not.
|
||||
//We use a single Odd function to check for Even-Odd, If it return true then it is Odd else it is Even.
|
||||
bool isOddBin(int num){
|
||||
//We compare the last bit of the number to decide for Even or Odd
|
||||
//If the last bit of the num is set (i.e. 1) then number is odd and its "Binary And (&)" with the 1 will return true(1).
|
||||
//Similarly in case of even num last bit is unset/off (i.e. 0) and its "Binary And (&)" with the 1 will return false(0).
|
||||
return (num&1);
|
||||
}
|
||||
|
||||
bool isOddN(int num){
|
||||
//In this we use the Mod(%) operator to check for Even-Odd.
|
||||
//If the num is Odd then (num%2) will give 1 and function will return true.
|
||||
//If the num is Even then (num%2) will give 0 and function will return false.
|
||||
return (num%2==1);
|
||||
}
|
||||
|
||||
int main() {
|
||||
int num;
|
||||
cin >> num; //Taking input from the user
|
||||
string result;
|
||||
result = isOddBin(num) ? "Odd" : "Even"; //Evaluating string based on result from isOdd function
|
||||
cout << result<<endl; //Printing result
|
||||
result = isOddN(num) ? "Odd" : "Even"; //Evaluating string based on result from isOdd function
|
||||
cout << result; //Printing result
|
||||
//Ex : num = 11 , result will print "Odd"
|
||||
//Ex : num = 8 , result will print "Even"
|
||||
//Time Complexity :O(1)
|
||||
//Space Complexity :O(1)
|
||||
return 0;
|
||||
}
|
|
@ -33,6 +33,7 @@
|
|||
- [Sparse Matrix](Arrays/sparse_matrix.cpp)
|
||||
|
||||
|
||||
|
||||
## Dynamic-Programming
|
||||
|
||||
- [Longest Common Subsequence](Dynamic-Programming/longest-common-subsequence.cpp)
|
||||
|
@ -128,6 +129,7 @@
|
|||
- [Boyer Moore pattern search](Strings/Boyer_Moore.cpp)
|
||||
- [Longest common prefix](Strings/longest-common-prefix.cpp)
|
||||
- [First unique character in the string](Strings/first-unique-character.cpp)
|
||||
- [Sliding Window to match target string](Strings/sliding-window.cpp)
|
||||
|
||||
## Trees
|
||||
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
/*
|
||||
Description: A program to find target sub string in given string
|
||||
|
||||
Approach: Using sliding window technique to compare every possible substring with the target string.
|
||||
It also supports variable length target inputs since we are initialising window size with size of target
|
||||
|
||||
Time complexity: O(n)
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
using namespace std;
|
||||
|
||||
void sliding(string s,string target){
|
||||
int window_size=target.size();
|
||||
bool notfound=true;
|
||||
for(int i=0;i<s.size();i++){
|
||||
|
||||
string value = s.substr(i,window_size);
|
||||
|
||||
if(target==value){
|
||||
cout<<target<<" found at "<<i<<" and "<<i+window_size<<endl;
|
||||
notfound = false;
|
||||
}
|
||||
}
|
||||
if(notfound)
|
||||
cout<<"Target Not found";
|
||||
}
|
||||
|
||||
int main() {
|
||||
string target="Ipsum";
|
||||
string s = "Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsu";
|
||||
sliding(s,target);
|
||||
|
||||
cout<<"\nenter the target string:";
|
||||
cin>>target;
|
||||
|
||||
sliding(s,target);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -10,7 +10,7 @@ import java.util.HashMap;
|
|||
* ----------------------------------------------------------------------------------------------------------------
|
||||
*
|
||||
* Constraints:
|
||||
* The input sting should contain only the characters ('I', 'V', 'X', 'L', 'C', 'D', 'M').
|
||||
* The input string should contain only the characters ('I', 'V', 'X', 'L', 'C', 'D', 'M').
|
||||
* It is guaranteed that the input is a valid roman numeral in the range [1, 3999].
|
||||
*
|
||||
* ----------------------------------------------------------------------------------------------------------------
|
||||
|
|
|
@ -48,3 +48,4 @@
|
|||
## Heaps
|
||||
|
||||
- [Max Heap](src/heaps/max-heap.js)
|
||||
- [Min Heap](src/heaps/min-heap.js)
|
||||
|
|
|
@ -0,0 +1,155 @@
|
|||
|
||||
// A binary heap is a partially ordered binary tree
|
||||
// that satisfies the heap property.
|
||||
// The heap property specifies a relationship between parent and child nodes.
|
||||
// In a min heap, all child nodes are larger than
|
||||
// or equal to their parent nodes.
|
||||
// Heaps are represented using arrays because
|
||||
// it is faster to determine elements position and it needs
|
||||
// less memory space as we don't need to maintain references to child nodes.
|
||||
// An example:
|
||||
// consider this min heap: [null, 0, 3, 1, 10, 35, 25, 47, 15].
|
||||
// The root node is the first element 0. its children are 3 and 1.
|
||||
// The general indexes formula for an element of index i are:
|
||||
// the parent is at: Math.floor(i / 2)
|
||||
// the left child is at: i * 2
|
||||
// the right child is at: i * 2 + 1
|
||||
|
||||
const isDefined = (value) => value !== undefined && value !== null;
|
||||
|
||||
class MinHeap {
|
||||
constructor() {
|
||||
this.heap = [null];
|
||||
}
|
||||
|
||||
// Insert a new element method
|
||||
// this is a recursive method, the algorithm is:
|
||||
// 1. Add the new element to the end of the array.
|
||||
// 2. If the element is less large than its parent, switch them.
|
||||
// 3. Continue switching until the new element is either
|
||||
// larger than its parent or you reach the root of the tree.
|
||||
|
||||
insert(value) {
|
||||
// add the new element to the end of the array
|
||||
this.heap.push(value);
|
||||
const place = (index) => {
|
||||
const parentIndex = Math.floor(index / 2);
|
||||
if (parentIndex <= 0) return;
|
||||
if (this.heap[index] < this.heap[parentIndex]) {
|
||||
// the switch is made here
|
||||
[this.heap[parentIndex], this.heap[index]] = [
|
||||
this.heap[index],
|
||||
this.heap[parentIndex],
|
||||
];
|
||||
place(parentIndex);
|
||||
}
|
||||
};
|
||||
// we begin the tests from the new element we added
|
||||
place(this.heap.length - 1);
|
||||
};
|
||||
|
||||
// Print heap content method
|
||||
print() {
|
||||
return this.heap;
|
||||
};
|
||||
|
||||
// Remove an element from the heap
|
||||
// it's also a recursive method, the algorithm will reestablish
|
||||
// the heap property after removing the root:
|
||||
// 1. Move the last element in the heap into the root position.
|
||||
// 2. If either child of the root is less large than it,
|
||||
// swap the root with the child of the least large value.
|
||||
// 3. Continue swapping until the parent is less great than both
|
||||
// children or you reach the last level in the tree.
|
||||
|
||||
remove() {
|
||||
// save the root value element because this method will return it
|
||||
const removed = this.heap[1];
|
||||
// the last element of the array is moved to the root position
|
||||
this.heap[1] = this.heap[this.heap.length - 1];
|
||||
// the last element is removed from the array
|
||||
this.heap.splice(this.heap.length - 1, 1);
|
||||
|
||||
const place = (index) => {
|
||||
if (index === this.heap.length - 1) return;
|
||||
const child1Index = 2 * index;
|
||||
const child2Index = child1Index + 1;
|
||||
const child1 = this.heap[child1Index];
|
||||
const child2 = this.heap[child2Index];
|
||||
let newIndex = index;
|
||||
// if the parent is greater than its two children
|
||||
// then the heap property is respected
|
||||
if (
|
||||
(!isDefined(child1) || this.heap[newIndex] <= child1) &&
|
||||
(!isDefined(child2) || this.heap[newIndex] <= child2)
|
||||
) {
|
||||
return;
|
||||
}
|
||||
// test if the parent is larger than its left child
|
||||
if (isDefined(child1) && this.heap[newIndex] > child1) {
|
||||
newIndex = child1Index;
|
||||
}
|
||||
// test if the parent is larger than its right child
|
||||
if (isDefined(child2) && this.heap[newIndex] > child2) {
|
||||
newIndex = child2Index;
|
||||
}
|
||||
// the parent is switched with the child of the least value
|
||||
if (index !== newIndex) {
|
||||
[this.heap[index], this.heap[newIndex]] = [
|
||||
this.heap[newIndex],
|
||||
this.heap[index],
|
||||
];
|
||||
place(newIndex);
|
||||
}
|
||||
};
|
||||
// start tests from the beginning of the array
|
||||
place(1);
|
||||
return removed;
|
||||
};
|
||||
|
||||
// Sort an array using a min heap
|
||||
// the elements of the array to sort were previously added one by one
|
||||
// to the heap using the insert method
|
||||
// the sorted array is the result of removing the heap's elements one by one
|
||||
// using the remove method until it is empty
|
||||
sort() {
|
||||
const arr = [];
|
||||
while (this.heap.length > 1) {
|
||||
arr.push(this.remove());
|
||||
}
|
||||
return arr;
|
||||
};
|
||||
// Verify the heap property of a given max heap
|
||||
verifyHeap() {
|
||||
const explore = (index) => {
|
||||
if (index === this.heap.length - 1) return true;
|
||||
const child1Index = 2 * index;
|
||||
const child2Index = 2 * index + 1;
|
||||
const child1 = this.heap[child1Index];
|
||||
const child2 = this.heap[child2Index];
|
||||
return (
|
||||
(!isDefined(child1) ||
|
||||
(this.heap[index] <= child1 && explore(child1Index))) &&
|
||||
(!isDefined(child2) ||
|
||||
(this.heap[index] <= child2 && explore(child2Index)))
|
||||
);
|
||||
};
|
||||
return explore(1);
|
||||
};
|
||||
}
|
||||
|
||||
const test = new MinHeap();
|
||||
test.insert(1);
|
||||
test.insert(3);
|
||||
test.insert(0);
|
||||
test.insert(10);
|
||||
test.insert(35);
|
||||
test.insert(25);
|
||||
test.insert(47);
|
||||
test.insert(15);
|
||||
// display heap elements
|
||||
console.log(test.print());
|
||||
// verify heap property
|
||||
console.log(test.verifyHeap());
|
||||
// display the sorted array
|
||||
console.log(test.sort());
|
|
@ -1,7 +1,9 @@
|
|||
# Bubble Sort
|
||||
|
||||
Bubble Sort also known as Sinking Sort is the simplest sorting algorithm. It swaps the numbers if they are not in correct order. The Worst Case Time Complexity is O(n^2)
|
||||
|
||||
Bubble Sort also known as Sinking Sort is the simplest sorting algorithm. It swaps the numbers if they are not in correct order.
|
||||
The Worst Case -
|
||||
Time Complexity : O(n^2)
|
||||
Space Compldxity : O(1) i.e it use constant space.
|
||||
## Steps
|
||||
|
||||
1. Compares the first element with the next element.
|
||||
|
|
Loading…
Reference in New Issue