Merge branch 'MakeContributions:main' into Arrays

pull/879/head
Lingeshwaran 2022-10-06 05:30:40 +05:30 committed by GitHub
commit 7e0476d351
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 239 additions and 4 deletions

View File

@ -0,0 +1,33 @@
#include <bits/stdc++.h>
using namespace std;
//Function to check whether a number is Odd or not.
//We use a single Odd function to check for Even-Odd, If it return true then it is Odd else it is Even.
bool isOddBin(int num){
//We compare the last bit of the number to decide for Even or Odd
//If the last bit of the num is set (i.e. 1) then number is odd and its "Binary And (&)" with the 1 will return true(1).
//Similarly in case of even num last bit is unset/off (i.e. 0) and its "Binary And (&)" with the 1 will return false(0).
return (num&1);
}
bool isOddN(int num){
//In this we use the Mod(%) operator to check for Even-Odd.
//If the num is Odd then (num%2) will give 1 and function will return true.
//If the num is Even then (num%2) will give 0 and function will return false.
return (num%2==1);
}
int main() {
int num;
cin >> num; //Taking input from the user
string result;
result = isOddBin(num) ? "Odd" : "Even"; //Evaluating string based on result from isOdd function
cout << result<<endl; //Printing result
result = isOddN(num) ? "Odd" : "Even"; //Evaluating string based on result from isOdd function
cout << result; //Printing result
//Ex : num = 11 , result will print "Odd"
//Ex : num = 8 , result will print "Even"
//Time Complexity :O(1)
//Space Complexity :O(1)
return 0;
}

View File

@ -33,6 +33,7 @@
- [Sparse Matrix](Arrays/sparse_matrix.cpp)
## Dynamic-Programming
- [Longest Common Subsequence](Dynamic-Programming/longest-common-subsequence.cpp)
@ -128,6 +129,7 @@
- [Boyer Moore pattern search](Strings/Boyer_Moore.cpp)
- [Longest common prefix](Strings/longest-common-prefix.cpp)
- [First unique character in the string](Strings/first-unique-character.cpp)
- [Sliding Window to match target string](Strings/sliding-window.cpp)
## Trees

View File

@ -0,0 +1,42 @@
/*
Description: A program to find target sub string in given string
Approach: Using sliding window technique to compare every possible substring with the target string.
It also supports variable length target inputs since we are initialising window size with size of target
Time complexity: O(n)
*/
#include <iostream>
#include <string>
using namespace std;
void sliding(string s,string target){
int window_size=target.size();
bool notfound=true;
for(int i=0;i<s.size();i++){
string value = s.substr(i,window_size);
if(target==value){
cout<<target<<" found at "<<i<<" and "<<i+window_size<<endl;
notfound = false;
}
}
if(notfound)
cout<<"Target Not found";
}
int main() {
string target="Ipsum";
string s = "Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsu";
sliding(s,target);
cout<<"\nenter the target string:";
cin>>target;
sliding(s,target);
return 0;
}

View File

@ -10,7 +10,7 @@ import java.util.HashMap;
* ----------------------------------------------------------------------------------------------------------------
*
* Constraints:
* The input sting should contain only the characters ('I', 'V', 'X', 'L', 'C', 'D', 'M').
* The input string should contain only the characters ('I', 'V', 'X', 'L', 'C', 'D', 'M').
* It is guaranteed that the input is a valid roman numeral in the range [1, 3999].
*
* ----------------------------------------------------------------------------------------------------------------

View File

@ -48,3 +48,4 @@
## Heaps
- [Max Heap](src/heaps/max-heap.js)
- [Min Heap](src/heaps/min-heap.js)

View File

@ -0,0 +1,155 @@
// A binary heap is a partially ordered binary tree
// that satisfies the heap property.
// The heap property specifies a relationship between parent and child nodes.
// In a min heap, all child nodes are larger than
// or equal to their parent nodes.
// Heaps are represented using arrays because
// it is faster to determine elements position and it needs
// less memory space as we don't need to maintain references to child nodes.
// An example:
// consider this min heap: [null, 0, 3, 1, 10, 35, 25, 47, 15].
// The root node is the first element 0. its children are 3 and 1.
// The general indexes formula for an element of index i are:
// the parent is at: Math.floor(i / 2)
// the left child is at: i * 2
// the right child is at: i * 2 + 1
const isDefined = (value) => value !== undefined && value !== null;
class MinHeap {
constructor() {
this.heap = [null];
}
// Insert a new element method
// this is a recursive method, the algorithm is:
// 1. Add the new element to the end of the array.
// 2. If the element is less large than its parent, switch them.
// 3. Continue switching until the new element is either
// larger than its parent or you reach the root of the tree.
insert(value) {
// add the new element to the end of the array
this.heap.push(value);
const place = (index) => {
const parentIndex = Math.floor(index / 2);
if (parentIndex <= 0) return;
if (this.heap[index] < this.heap[parentIndex]) {
// the switch is made here
[this.heap[parentIndex], this.heap[index]] = [
this.heap[index],
this.heap[parentIndex],
];
place(parentIndex);
}
};
// we begin the tests from the new element we added
place(this.heap.length - 1);
};
// Print heap content method
print() {
return this.heap;
};
// Remove an element from the heap
// it's also a recursive method, the algorithm will reestablish
// the heap property after removing the root:
// 1. Move the last element in the heap into the root position.
// 2. If either child of the root is less large than it,
// swap the root with the child of the least large value.
// 3. Continue swapping until the parent is less great than both
// children or you reach the last level in the tree.
remove() {
// save the root value element because this method will return it
const removed = this.heap[1];
// the last element of the array is moved to the root position
this.heap[1] = this.heap[this.heap.length - 1];
// the last element is removed from the array
this.heap.splice(this.heap.length - 1, 1);
const place = (index) => {
if (index === this.heap.length - 1) return;
const child1Index = 2 * index;
const child2Index = child1Index + 1;
const child1 = this.heap[child1Index];
const child2 = this.heap[child2Index];
let newIndex = index;
// if the parent is greater than its two children
// then the heap property is respected
if (
(!isDefined(child1) || this.heap[newIndex] <= child1) &&
(!isDefined(child2) || this.heap[newIndex] <= child2)
) {
return;
}
// test if the parent is larger than its left child
if (isDefined(child1) && this.heap[newIndex] > child1) {
newIndex = child1Index;
}
// test if the parent is larger than its right child
if (isDefined(child2) && this.heap[newIndex] > child2) {
newIndex = child2Index;
}
// the parent is switched with the child of the least value
if (index !== newIndex) {
[this.heap[index], this.heap[newIndex]] = [
this.heap[newIndex],
this.heap[index],
];
place(newIndex);
}
};
// start tests from the beginning of the array
place(1);
return removed;
};
// Sort an array using a min heap
// the elements of the array to sort were previously added one by one
// to the heap using the insert method
// the sorted array is the result of removing the heap's elements one by one
// using the remove method until it is empty
sort() {
const arr = [];
while (this.heap.length > 1) {
arr.push(this.remove());
}
return arr;
};
// Verify the heap property of a given max heap
verifyHeap() {
const explore = (index) => {
if (index === this.heap.length - 1) return true;
const child1Index = 2 * index;
const child2Index = 2 * index + 1;
const child1 = this.heap[child1Index];
const child2 = this.heap[child2Index];
return (
(!isDefined(child1) ||
(this.heap[index] <= child1 && explore(child1Index))) &&
(!isDefined(child2) ||
(this.heap[index] <= child2 && explore(child2Index)))
);
};
return explore(1);
};
}
const test = new MinHeap();
test.insert(1);
test.insert(3);
test.insert(0);
test.insert(10);
test.insert(35);
test.insert(25);
test.insert(47);
test.insert(15);
// display heap elements
console.log(test.print());
// verify heap property
console.log(test.verifyHeap());
// display the sorted array
console.log(test.sort());

View File

@ -1,7 +1,9 @@
# Bubble Sort
Bubble Sort also known as Sinking Sort is the simplest sorting algorithm. It swaps the numbers if they are not in correct order. The Worst Case Time Complexity is O(n^2)
Bubble Sort also known as Sinking Sort is the simplest sorting algorithm. It swaps the numbers if they are not in correct order.
The Worst Case -
Time Complexity : O(n^2)
Space Compldxity : O(1) i.e it use constant space.
## Steps
1. Compares the first element with the next element.