chore(Java): add square root using binary search (#826)
parent
7dc2c928f7
commit
7fabd6432d
|
@ -0,0 +1,49 @@
|
|||
// Calculating Square root of a number which is not necessarily perfect square
|
||||
// using Binary Search i.e. is using decrease and conquer approach
|
||||
// Time: O(log(n))
|
||||
public class BinarySearchSQRT {
|
||||
public static void main(String[] args) {
|
||||
int n = 40; // number whose square root is to be calculated
|
||||
int p = 3; // decimal precision required
|
||||
|
||||
System.out.printf("%.3f", sqrt(n, p));
|
||||
}
|
||||
static double sqrt(int n, int p) {
|
||||
int s = 0;
|
||||
int e = n;
|
||||
|
||||
double root = 0.0;
|
||||
|
||||
while (s <= e) {
|
||||
int m = s + (e - s) / 2; //this method of calculating middle element avoids integer overflow
|
||||
|
||||
if (m * m == n) { //the middle element is the required sqrt
|
||||
return m;
|
||||
}
|
||||
else if (m * m > n) { //sqrt lies on the left part
|
||||
e = m - 1;
|
||||
}
|
||||
else { // sqrt lies in the right part
|
||||
s = m + 1;
|
||||
root = m;
|
||||
}
|
||||
}
|
||||
//now the root contains the nearest integer to the required square root
|
||||
//now we need to add decimal precision to the root so that we can get as close to the exact sqrt
|
||||
double incr = 0.1; //initialise
|
||||
for (int i = 0; i < p; i++) {
|
||||
while (root * root <= n) { //if the square of the root we have is less than the number
|
||||
root += incr; //we will add incr decimal point each time
|
||||
}
|
||||
root -= incr;
|
||||
incr /= 10; //here we increase the decimal point
|
||||
}
|
||||
|
||||
return root; //here we have root up to p decimal point
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Output -
|
||||
6.324
|
||||
*/
|
|
@ -33,6 +33,7 @@
|
|||
- [Catalan Numbers](Maths/catalan-numbers.java)
|
||||
- [Nth Geek Onacci Number](Maths/nth-geek-onacci-number.java)
|
||||
- [Random Node in Linked List](Maths/algorithms_random_node.java)
|
||||
- [Square Root using BinarySearch](Maths/square-root.java)
|
||||
|
||||
## Queues
|
||||
|
||||
|
|
Loading…
Reference in New Issue