chore(JavaScript): add max heap (#842)
parent
368ec2e1db
commit
8072446b24
|
@ -44,3 +44,7 @@
|
|||
## Recursion
|
||||
|
||||
- [Factorial](src/recursion/factorial.js)
|
||||
|
||||
## Heaps
|
||||
|
||||
- [Max Heap](src/heaps/max-heap.js)
|
|
@ -0,0 +1,155 @@
|
|||
|
||||
// A binary heap is a partially ordered binary tree
|
||||
// that satisfies the heap property.
|
||||
// The heap property specifies a relationship between parent and child nodes.
|
||||
// In a max heap, all parent nodes are greater than
|
||||
// or equal to their child nodes.
|
||||
// Heaps are represented using arrays because
|
||||
// it is faster to determine elements position and it needs
|
||||
// less memory space as we don't need to maintain references to child nodes.
|
||||
// An example:
|
||||
// consider this max heap: [null, 47, 15, 35, 10, 3, 0, 25, 1].
|
||||
// The root node is the first element 47. its children are 15 and 35.
|
||||
// The general indexes formula for an element of index i are:
|
||||
// the parent is at: Math.floor(i / 2)
|
||||
// the left child is at: i * 2
|
||||
// the right child is at: i * 2 + 1
|
||||
|
||||
const isDefined = (value) => value !== undefined && value !== null;
|
||||
|
||||
class MaxHeap {
|
||||
constructor() {
|
||||
this.heap = [null];
|
||||
}
|
||||
|
||||
// Insert a new element method
|
||||
// this is a recursive method, the algorithm is:
|
||||
// 1. Add the new element to the end of the array.
|
||||
// 2. If the element is larger than its parent, switch them.
|
||||
// 3. Continue switching until the new element is either
|
||||
// smaller than its parent or you reach the root of the tree.
|
||||
|
||||
insert(value) {
|
||||
// add the new element to the end of the array
|
||||
this.heap.push(value);
|
||||
const place = (index) => {
|
||||
const parentIndex = Math.floor(index / 2);
|
||||
if (parentIndex <= 0) return;
|
||||
if (this.heap[index] > this.heap[parentIndex]) {
|
||||
// the switch is made here
|
||||
[this.heap[parentIndex], this.heap[index]] = [
|
||||
this.heap[index],
|
||||
this.heap[parentIndex],
|
||||
];
|
||||
place(parentIndex);
|
||||
}
|
||||
};
|
||||
// we begin the tests from the new element we added
|
||||
place(this.heap.length - 1);
|
||||
};
|
||||
|
||||
// Print heap content method
|
||||
print() {
|
||||
return this.heap;
|
||||
};
|
||||
|
||||
// Remove an element from the heap
|
||||
// it's also a recursive method, the algorithm will reestablish
|
||||
// the heap property after removing the root:
|
||||
// 1. Move the last element in the heap into the root position.
|
||||
// 2. If either child of the root is greater than it,
|
||||
// swap the root with the child of greater value.
|
||||
// 3. Continue swapping until the parent is greater than both
|
||||
// children or you reach the last level in the tree.
|
||||
|
||||
remove() {
|
||||
// save the root value element because this method will return it
|
||||
const removed = this.heap[1];
|
||||
// the last element of the array is moved to the root position
|
||||
this.heap[1] = this.heap[this.heap.length - 1];
|
||||
// the last element is removed from the array
|
||||
this.heap.splice(this.heap.length - 1, 1);
|
||||
|
||||
const place = (index) => {
|
||||
if (index === this.heap.length - 1) return;
|
||||
const child1Index = 2 * index;
|
||||
const child2Index = child1Index + 1;
|
||||
const child1 = this.heap[child1Index];
|
||||
const child2 = this.heap[child2Index];
|
||||
let newIndex = index;
|
||||
// if the parent is greater than its two children
|
||||
// then the heap property is respected
|
||||
if (
|
||||
(!isDefined(child1) || this.heap[newIndex] >= child1) &&
|
||||
(!isDefined(child2) || this.heap[newIndex] >= child2)
|
||||
) {
|
||||
return;
|
||||
}
|
||||
// test if the parent is less than its left child
|
||||
if (isDefined(child1) && this.heap[newIndex] < child1) {
|
||||
newIndex = child1Index;
|
||||
}
|
||||
// test if the parent is less than its right child
|
||||
if (isDefined(child2) && this.heap[newIndex] < child2) {
|
||||
newIndex = child2Index;
|
||||
}
|
||||
// the parent is switched with the child of the biggest value
|
||||
if (index !== newIndex) {
|
||||
[this.heap[index], this.heap[newIndex]] = [
|
||||
this.heap[newIndex],
|
||||
this.heap[index],
|
||||
];
|
||||
place(newIndex);
|
||||
}
|
||||
};
|
||||
// start tests from the beginning of the array
|
||||
place(1);
|
||||
return removed;
|
||||
};
|
||||
|
||||
// Sort an array using a max heap
|
||||
// the elements of the array to sort were previously added one by one
|
||||
// to the heap using the insert method
|
||||
// the sorted array is the result of removing the heap's elements one by one
|
||||
// using the remove method until it is empty
|
||||
sort() {
|
||||
const arr = [];
|
||||
while (this.heap.length > 1) {
|
||||
arr.push(this.remove());
|
||||
}
|
||||
return arr;
|
||||
};
|
||||
// Verify the heap property of a given max heap
|
||||
verifyHeap() {
|
||||
const explore = (index) => {
|
||||
if (index === this.heap.length - 1) return true;
|
||||
const child1Index = 2 * index;
|
||||
const child2Index = 2 * index + 1;
|
||||
const child1 = this.heap[child1Index];
|
||||
const child2 = this.heap[child2Index];
|
||||
return (
|
||||
(!isDefined(child1) ||
|
||||
(this.heap[index] >= child1 && explore(child1Index))) &&
|
||||
(!isDefined(child2) ||
|
||||
(this.heap[index] >= child2 && explore(child2Index)))
|
||||
);
|
||||
};
|
||||
return explore(1);
|
||||
};
|
||||
}
|
||||
|
||||
const test = new MaxHeap();
|
||||
test.insert(1);
|
||||
test.insert(3);
|
||||
test.insert(0);
|
||||
test.insert(10);
|
||||
test.insert(35);
|
||||
test.insert(25);
|
||||
test.insert(47);
|
||||
test.insert(15);
|
||||
// display heap elements
|
||||
console.log(test.print());
|
||||
// verify heap property
|
||||
console.log(test.verifyHeap());
|
||||
// display the sorted array
|
||||
console.log(test.sort());
|
Loading…
Reference in New Issue