From 8072446b24c70789b88d99910ea4c2783322bb18 Mon Sep 17 00:00:00 2001 From: Adelinked <95980174+Adelinked@users.noreply.github.com> Date: Sun, 25 Sep 2022 02:47:06 +0100 Subject: [PATCH] chore(JavaScript): add max heap (#842) --- algorithms/JavaScript/README.md | 4 + algorithms/JavaScript/src/heaps/max-heap.js | 155 ++++++++++++++++++++ 2 files changed, 159 insertions(+) create mode 100644 algorithms/JavaScript/src/heaps/max-heap.js diff --git a/algorithms/JavaScript/README.md b/algorithms/JavaScript/README.md index f20b4faa..705c22d0 100644 --- a/algorithms/JavaScript/README.md +++ b/algorithms/JavaScript/README.md @@ -44,3 +44,7 @@ ## Recursion - [Factorial](src/recursion/factorial.js) + +## Heaps + +- [Max Heap](src/heaps/max-heap.js) \ No newline at end of file diff --git a/algorithms/JavaScript/src/heaps/max-heap.js b/algorithms/JavaScript/src/heaps/max-heap.js new file mode 100644 index 00000000..c1a4a915 --- /dev/null +++ b/algorithms/JavaScript/src/heaps/max-heap.js @@ -0,0 +1,155 @@ + +// A binary heap is a partially ordered binary tree +// that satisfies the heap property. +// The heap property specifies a relationship between parent and child nodes. +// In a max heap, all parent nodes are greater than +// or equal to their child nodes. +// Heaps are represented using arrays because +// it is faster to determine elements position and it needs +// less memory space as we don't need to maintain references to child nodes. +// An example: +// consider this max heap: [null, 47, 15, 35, 10, 3, 0, 25, 1]. +// The root node is the first element 47. its children are 15 and 35. +// The general indexes formula for an element of index i are: +// the parent is at: Math.floor(i / 2) +// the left child is at: i * 2 +// the right child is at: i * 2 + 1 + +const isDefined = (value) => value !== undefined && value !== null; + +class MaxHeap { + constructor() { + this.heap = [null]; + } + + // Insert a new element method + // this is a recursive method, the algorithm is: + // 1. Add the new element to the end of the array. + // 2. If the element is larger than its parent, switch them. + // 3. Continue switching until the new element is either + // smaller than its parent or you reach the root of the tree. + + insert(value) { + // add the new element to the end of the array + this.heap.push(value); + const place = (index) => { + const parentIndex = Math.floor(index / 2); + if (parentIndex <= 0) return; + if (this.heap[index] > this.heap[parentIndex]) { + // the switch is made here + [this.heap[parentIndex], this.heap[index]] = [ + this.heap[index], + this.heap[parentIndex], + ]; + place(parentIndex); + } + }; + // we begin the tests from the new element we added + place(this.heap.length - 1); + }; + + // Print heap content method + print() { + return this.heap; + }; + + // Remove an element from the heap + // it's also a recursive method, the algorithm will reestablish + // the heap property after removing the root: + // 1. Move the last element in the heap into the root position. + // 2. If either child of the root is greater than it, + // swap the root with the child of greater value. + // 3. Continue swapping until the parent is greater than both + // children or you reach the last level in the tree. + + remove() { + // save the root value element because this method will return it + const removed = this.heap[1]; + // the last element of the array is moved to the root position + this.heap[1] = this.heap[this.heap.length - 1]; + // the last element is removed from the array + this.heap.splice(this.heap.length - 1, 1); + + const place = (index) => { + if (index === this.heap.length - 1) return; + const child1Index = 2 * index; + const child2Index = child1Index + 1; + const child1 = this.heap[child1Index]; + const child2 = this.heap[child2Index]; + let newIndex = index; + // if the parent is greater than its two children + // then the heap property is respected + if ( + (!isDefined(child1) || this.heap[newIndex] >= child1) && + (!isDefined(child2) || this.heap[newIndex] >= child2) + ) { + return; + } + // test if the parent is less than its left child + if (isDefined(child1) && this.heap[newIndex] < child1) { + newIndex = child1Index; + } + // test if the parent is less than its right child + if (isDefined(child2) && this.heap[newIndex] < child2) { + newIndex = child2Index; + } + // the parent is switched with the child of the biggest value + if (index !== newIndex) { + [this.heap[index], this.heap[newIndex]] = [ + this.heap[newIndex], + this.heap[index], + ]; + place(newIndex); + } + }; + // start tests from the beginning of the array + place(1); + return removed; + }; + + // Sort an array using a max heap + // the elements of the array to sort were previously added one by one + // to the heap using the insert method + // the sorted array is the result of removing the heap's elements one by one + // using the remove method until it is empty + sort() { + const arr = []; + while (this.heap.length > 1) { + arr.push(this.remove()); + } + return arr; + }; + // Verify the heap property of a given max heap + verifyHeap() { + const explore = (index) => { + if (index === this.heap.length - 1) return true; + const child1Index = 2 * index; + const child2Index = 2 * index + 1; + const child1 = this.heap[child1Index]; + const child2 = this.heap[child2Index]; + return ( + (!isDefined(child1) || + (this.heap[index] >= child1 && explore(child1Index))) && + (!isDefined(child2) || + (this.heap[index] >= child2 && explore(child2Index))) + ); + }; + return explore(1); + }; +} + +const test = new MaxHeap(); +test.insert(1); +test.insert(3); +test.insert(0); +test.insert(10); +test.insert(35); +test.insert(25); +test.insert(47); +test.insert(15); +// display heap elements +console.log(test.print()); +// verify heap property +console.log(test.verifyHeap()); +// display the sorted array +console.log(test.sort());