added Geometry section in dsa
parent
f8174124bb
commit
92c144a0e6
|
@ -0,0 +1,128 @@
|
|||
/*
|
||||
Given a set of points in the plane. the convex hull of the set is the smallest convex polygon that contains all the points of it.
|
||||
|
||||
|
||||
Algorithm:
|
||||
Step 1) Initialize p as leftmost point.
|
||||
Step 2) Do following while we don’t come back to the first (or leftmost) point.
|
||||
2.1) The next point q is the point, such that the triplet (p, q, r) is counter clockwise for any other point r.
|
||||
|
||||
To find this, we simply initialize q as next point, then we traverse through all points.
|
||||
|
||||
For any point i, if i is more counter clockwise, i.e., orientation(p, i, q) is counter clockwise, then we update q as i.
|
||||
|
||||
Our final value of q is going to be the most counter clockwise point.
|
||||
2.2) next[p] = q (Store q as next of p in the output convex hull).
|
||||
2.3) p = q (Set p as q for next iteration).
|
||||
|
||||
*/
|
||||
|
||||
|
||||
|
||||
// A C++ program to find convex hull of a set of points. Refer
|
||||
|
||||
#include <bits/stdc++.h>
|
||||
using namespace std;
|
||||
|
||||
struct Point
|
||||
{
|
||||
int x, y;
|
||||
};
|
||||
|
||||
// To find orientation of ordered triplet (p, q, r).
|
||||
// The function returns following values
|
||||
// 0 --> p, q and r are collinear
|
||||
// 1 --> Clockwise
|
||||
// 2 --> Counterclockwise
|
||||
int orientation(Point p, Point q, Point r)
|
||||
{
|
||||
int val = (q.y - p.y) * (r.x - q.x) -
|
||||
(q.x - p.x) * (r.y - q.y);
|
||||
|
||||
if (val == 0) return 0; // collinear
|
||||
return (val > 0)? 1: 2; // clock or counterclock wise
|
||||
}
|
||||
|
||||
// Prints convex hull of a set of n points.
|
||||
void convexHull(Point points[], int n)
|
||||
{
|
||||
// There must be at least 3 points
|
||||
if (n < 3) return;
|
||||
|
||||
// Initialize Result
|
||||
vector<Point> hull;
|
||||
|
||||
// Find the leftmost point
|
||||
int l = 0;
|
||||
for (int i = 1; i < n; i++)
|
||||
if (points[i].x < points[l].x)
|
||||
l = i;
|
||||
|
||||
// Start from leftmost point, keep moving counterclockwise
|
||||
// until reach the start point again. This loop runs O(h)
|
||||
// times where h is number of points in result or output.
|
||||
int p = l, q;
|
||||
do
|
||||
{
|
||||
// Add current point to result
|
||||
hull.push_back(points[p]);
|
||||
|
||||
// Search for a point 'q' such that orientation(p, q,
|
||||
// x) is counterclockwise for all points 'x'. The idea
|
||||
// is to keep track of last visited most counterclock-
|
||||
// wise point in q. If any point 'i' is more counterclock-
|
||||
// wise than q, then update q.
|
||||
q = (p+1)%n;
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
// If i is more counterclockwise than current q, then
|
||||
// update q
|
||||
if (orientation(points[p], points[i], points[q]) == 2)
|
||||
q = i;
|
||||
}
|
||||
|
||||
// Now q is the most counterclockwise with respect to p
|
||||
// Set p as q for next iteration, so that q is added to
|
||||
// result 'hull'
|
||||
p = q;
|
||||
|
||||
} while (p != l); // While we don't come to first point
|
||||
|
||||
// Print Result
|
||||
for (int i = 0; i < hull.size(); i++)
|
||||
cout << "(" << hull[i].x << ", "
|
||||
<< hull[i].y << ")\n";
|
||||
}
|
||||
|
||||
// Driver program to test above functions
|
||||
int main()
|
||||
{
|
||||
Point points[] = {{0, 3}, {2, 2}, {1, 1}, {2, 1},
|
||||
{3, 0}, {0, 0}, {3, 3}};
|
||||
int n = sizeof(points)/sizeof(points[0]);
|
||||
convexHull(points, n);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
|
||||
Output: The output is points of the convex hull.
|
||||
|
||||
|
||||
(0, 3)
|
||||
(0, 0)
|
||||
(3, 0)
|
||||
(3, 3)
|
||||
|
||||
|
||||
Time Complexity: O(m * n), where n is number of input points and m is number of output or hull points (m <= n). For every point on the hull we examine all the other points to determine the next point.
|
||||
|
||||
Worst case, Time complexity: O(n2). The worst case occurs when all the points are on the hull (m = n).
|
||||
|
||||
Auxiliary Space: O(n), since n extra space has been taken.
|
||||
Set 2- Convex Hull (Graham Scan)
|
||||
|
||||
Note : The above code may produce different results for different order of inputs, when there are collinear points in the convex hull. For example, it produces output as (0, 3) (0, 0) (3, 0) (3, 3) for input (0, 3), (0, 0), (0, 1), (3, 0), (3, 3) and output as (0, 3) (0, 1) (0, 0) (3, 0) (3, 3) for input as (0, 3), (0, 1), (0, 0), (3, 0), (3, 3). We generally need the farthest next point in case of collinear, we can get the desired result in case of collinear points by adding one more if condition.
|
||||
|
||||
*/
|
|
@ -182,3 +182,7 @@
|
|||
- [Product of two numbers](Recursion\product-of-numbers.cpp)
|
||||
- [Product of digits in a number](Recursion\product-of-digits.cpp)
|
||||
- [Linear search using recursion](Recursion/linear-search.cpp)
|
||||
|
||||
# Geometry
|
||||
|
||||
- [Convex hull Problem](Geometry/convex-hull.cpp)
|
||||
|
|
Loading…
Reference in New Issue