enh(CPlusPlus): memory usage on Dijksta algorithm (#1061)
Co-authored-by: Arsenic <54987647+Arsenic-ATG@users.noreply.github.com>pull/1079/head
parent
ec8bdb7c84
commit
978a119d9a
|
@ -1,99 +1,177 @@
|
||||||
//Dijkstra's algorithm
|
#include <cstddef>
|
||||||
//implemented in the context of a directed graph
|
#include <limits>
|
||||||
#include <bits/stdc++.h>
|
|
||||||
using namespace std;
|
|
||||||
|
|
||||||
int dijkstra(vector<vector<pair<int,int>>>& graph, int start, int end){
|
//I highly recommend to create matrix class
|
||||||
//return value(-1 if endpoint is unreachable)
|
template <typename T>
|
||||||
int ret=-1;
|
inline T& getMatrixElement( T* matrix, size_t size,
|
||||||
|
size_t row, size_t column)
|
||||||
|
{
|
||||||
|
return *(matrix + row * size + column);
|
||||||
|
}
|
||||||
|
|
||||||
//storing cost(distance) of each vertex, set initial value as -1
|
template <typename T>
|
||||||
vector<int> dist(graph.size(),-1);
|
inline void setMatrixElement ( T* matrix, size_t size,
|
||||||
|
size_t row, size_t column, T element)
|
||||||
|
{
|
||||||
|
*(matrix + row * size + column) = element;
|
||||||
|
}
|
||||||
|
|
||||||
//priority queue to store traversing vertices and cost values
|
template <typename T>
|
||||||
//data will be stored in the format of: {cost, current vertex}
|
size_t minDistance(T* vector, bool* states, size_t size)
|
||||||
//entry with minimum cost will always be on top
|
{
|
||||||
priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> pq;
|
size_t index;
|
||||||
pq.push({0,start});
|
T min = std::numeric_limits<T>::max();
|
||||||
|
|
||||||
while(!pq.empty()){
|
for(size_t i = 0; i < size; i++)
|
||||||
int cVertex, cCost;
|
{
|
||||||
tie(cCost,cVertex) = pq.top();
|
if (states[i] == false && vector[i] <= min)
|
||||||
pq.pop();
|
{
|
||||||
|
min = vector[i];
|
||||||
|
index = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
//vertex already visited with lower cost -> continue
|
return index;
|
||||||
if(dist[cVertex]!=-1&&dist[cVertex]<=cCost)continue;
|
}
|
||||||
//otherwise we update our current cost(distance)
|
|
||||||
dist[cVertex]=cCost;
|
|
||||||
|
|
||||||
if(cVertex==end){
|
template <typename T>
|
||||||
ret=cCost;
|
T* dijkstra (T* matrix, size_t matrix_size, size_t start_pos)
|
||||||
|
{
|
||||||
|
T* result = new T [matrix_size];
|
||||||
|
// I recoment use dynamic bitset from boost library
|
||||||
|
bool* states = new bool[matrix_size];
|
||||||
|
|
||||||
|
//Set All elements to max value and all state to False
|
||||||
|
for(size_t i = 0; i < matrix_size; i++)
|
||||||
|
{
|
||||||
|
result[i] = std::numeric_limits<T>::max();
|
||||||
|
states[i] = false;
|
||||||
|
}
|
||||||
|
|
||||||
|
result[0] = 0;
|
||||||
|
|
||||||
|
for(size_t i = 0; i < matrix_size; i++)
|
||||||
|
{
|
||||||
|
size_t index = minDistance(result, states, matrix_size);
|
||||||
|
states[index] = true;
|
||||||
|
|
||||||
|
for(size_t j = 0; j < matrix_size; j++)
|
||||||
|
{
|
||||||
|
if (
|
||||||
|
!states[j] &&
|
||||||
|
getMatrixElement(matrix, matrix_size, index, j) &&
|
||||||
|
result[index] + getMatrixElement(matrix, matrix_size, index, j) < result[j]
|
||||||
|
//result.get(index) != std::numeric_limits<T>::max()
|
||||||
|
)
|
||||||
|
{
|
||||||
|
T new_val = result[index] + getMatrixElement(matrix, matrix_size, index, j);
|
||||||
|
result[j] = new_val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
|
||||||
|
//function declaration below
|
||||||
|
//Generate and std::cout << matrix
|
||||||
|
void getExampleMatrix(int*& matrix_out, size_t& size_out);
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
//I highly recommend to create matrix class
|
||||||
|
|
||||||
|
size_t size;
|
||||||
|
std::cout << "Graph Size: ";
|
||||||
|
std::cin >> size;
|
||||||
|
|
||||||
|
int* user_graph_matrix = new int [size*size];
|
||||||
|
|
||||||
|
for(size_t i = 0; i < size; i++)
|
||||||
|
{
|
||||||
|
for(size_t j = 0; j < size; j++)
|
||||||
|
{
|
||||||
|
int temp;
|
||||||
|
std::cout << "(" << j << ", " << i << ") = ";
|
||||||
|
std::cin >> temp;
|
||||||
|
|
||||||
|
setMatrixElement(user_graph_matrix, size, i, j, temp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
size_t start_element = std::numeric_limits<size_t>::max();
|
||||||
|
while (true)
|
||||||
|
{
|
||||||
|
std::cout << "Choose First Element: ";
|
||||||
|
std::cin >> start_element;
|
||||||
|
|
||||||
|
if(start_element < size)
|
||||||
break;
|
break;
|
||||||
|
|
||||||
|
std::cout << "[Warning] Number of element is greater that matrix size\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
for(pair<int,int> nPair : graph[cVertex]){
|
auto ex_result = dijkstra(user_graph_matrix, size, start_element);
|
||||||
int nVertex, nCost;
|
for(size_t i = 0; i < size; i++)
|
||||||
tie(nVertex,nCost) = nPair;
|
{
|
||||||
if(dist[nVertex]!=-1&&dist[nVertex]<=cCost+nCost){
|
std::cout << ex_result[i] << " ";
|
||||||
//the next vertex has already been traversed with lower cost
|
|
||||||
continue;
|
|
||||||
}
|
}
|
||||||
//otherwise we add a new entry to the priority queue
|
std::cout << "\n";
|
||||||
pq.push({nCost+cCost,nVertex});
|
|
||||||
}
|
// !!! Unkoment for example matrix
|
||||||
}
|
|
||||||
return ret;
|
// size_t ex_size;
|
||||||
|
// int* ex_matrix;
|
||||||
|
|
||||||
|
// getExampleMatrix(ex_matrix, ex_size);
|
||||||
|
|
||||||
|
// auto ex_result = dijkstra(ex_matrix, ex_size, 0);
|
||||||
|
// for(size_t i = 0; i < ex_size; i++)
|
||||||
|
// {
|
||||||
|
// std::cout << ex_result[i] << " ";
|
||||||
|
// }
|
||||||
|
// std::cout << "\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
int main(){
|
void getExampleMatrix(int*& matrix_out, size_t& size_out)
|
||||||
//number of vertices(V) and edges(E)
|
{
|
||||||
int V, E;
|
size_t size = 4;
|
||||||
cout << "Enter the number of vertices: ";
|
int* graph_matrix = new int[size*size];
|
||||||
cin >> V;
|
|
||||||
cout << "Enter the number of edges: ";
|
setMatrixElement(graph_matrix, size, 0, 0, 0);
|
||||||
cin >> E;
|
setMatrixElement(graph_matrix, size, 0, 1, 0);
|
||||||
cout << "Enter each edge information in the format of: \n";
|
setMatrixElement(graph_matrix, size, 0, 2, 3);
|
||||||
cout << "(Source vertex number) (Destination vertex number) (cost)\n";
|
setMatrixElement(graph_matrix, size, 0, 3, 1);
|
||||||
//Adjacency list
|
|
||||||
//data will be stored in the format of: {destination,cost}
|
setMatrixElement(graph_matrix, size, 1, 0, 0);
|
||||||
//with the first index as the source
|
setMatrixElement(graph_matrix, size, 1, 1, 0);
|
||||||
vector<vector<pair<int,int>>> graph(V+1,vector<pair<int,int>>());
|
setMatrixElement(graph_matrix, size, 1, 2, 0);
|
||||||
while(E--){
|
setMatrixElement(graph_matrix, size, 1, 3, 5);
|
||||||
int source, dest, cost;
|
|
||||||
cin >> source >> dest >> cost;
|
setMatrixElement(graph_matrix, size, 2, 0, 3);
|
||||||
graph[source].push_back({dest,cost});
|
setMatrixElement(graph_matrix, size, 2, 1, 0);
|
||||||
|
setMatrixElement(graph_matrix, size, 2, 2, 0);
|
||||||
|
setMatrixElement(graph_matrix, size, 2, 3, 1);
|
||||||
|
|
||||||
|
setMatrixElement(graph_matrix, size, 3, 0, 1);
|
||||||
|
setMatrixElement(graph_matrix, size, 3, 1, 5);
|
||||||
|
setMatrixElement(graph_matrix, size, 3, 2, 1);
|
||||||
|
setMatrixElement(graph_matrix, size, 3, 3, 0);
|
||||||
|
|
||||||
|
for(size_t i = 0; i < size; i++)
|
||||||
|
{
|
||||||
|
for (size_t j = 0; j < size; j++)
|
||||||
|
{
|
||||||
|
std::cout << getMatrixElement(graph_matrix, size, i, j) << " ";
|
||||||
}
|
}
|
||||||
//starting point(start), ending point(end)
|
std::cout << "\n";
|
||||||
int start, end;
|
|
||||||
cout << "Enter the starting point: ";
|
|
||||||
cin >> start;
|
|
||||||
cout << "Enter the ending point: ";
|
|
||||||
cin >> end;
|
|
||||||
int answer = dijkstra(graph,start,end);
|
|
||||||
if(answer==-1){
|
|
||||||
cout << "Shortest path from " << start << " to " << end << " does not exist." << endl;
|
|
||||||
}
|
}
|
||||||
else
|
std::cout << "\n";
|
||||||
cout << "The minimum cost for the shortest path is: " << answer << endl;
|
|
||||||
|
size_out = size;
|
||||||
|
matrix_out = graph_matrix;
|
||||||
}
|
}
|
||||||
//Time complexity: O(ElogV)
|
|
||||||
//Space complexity: O(V+E)
|
|
||||||
|
|
||||||
/*
|
|
||||||
Sample Input
|
|
||||||
5
|
|
||||||
8
|
|
||||||
1 2 2
|
|
||||||
1 3 3
|
|
||||||
1 4 1
|
|
||||||
1 5 10
|
|
||||||
2 4 2
|
|
||||||
3 4 1
|
|
||||||
3 5 1
|
|
||||||
4 5 3
|
|
||||||
1
|
|
||||||
5
|
|
||||||
|
|
||||||
Output(minimum cost)
|
|
||||||
4
|
|
||||||
*/
|
|
Loading…
Reference in New Issue