Create Kruskal's_Algorithm.py
Kruskal’s algorithm to find the minimum cost spanning tree uses the greedy approach. The Greedy Choice is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far. Time Complexity: O(ElogE) or O(ElogV), Sorting of edges takes O(ELogE) time. After sorting, we iterate through all edges and apply the find-union algorithm. The find and union operations can take at most O(LogV) time. So overall complexity is O(ELogE + ELogV) time. The value of E can be at most O(V2), so O(LogV) is O(LogE) the same. Therefore, the overall time complexity is O(ElogE) or O(ElogV) Auxiliary Space: O(V + E), where V is the number of vertices and E is the number of edges in the graphpull/993/head
parent
3c7339e59c
commit
9956c1ff60
|
@ -0,0 +1,112 @@
|
|||
# Python program for Kruskal's algorithm to find
|
||||
# Minimum Spanning Tree of a given connected,
|
||||
# undirected and weighted graph
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
# Class to represent a graph
|
||||
|
||||
|
||||
class Graph:
|
||||
|
||||
def __init__(self, vertices):
|
||||
self.V = vertices # No. of vertices
|
||||
self.graph = [] # default dictionary
|
||||
# to store graph
|
||||
|
||||
# function to add an edge to graph
|
||||
def addEdge(self, u, v, w):
|
||||
self.graph.append([u, v, w])
|
||||
|
||||
# A utility function to find set of an element i
|
||||
# (uses path compression technique)
|
||||
def find(self, parent, i):
|
||||
if parent[i] == i:
|
||||
return i
|
||||
return self.find(parent, parent[i])
|
||||
|
||||
# A function that does union of two sets of x and y
|
||||
# (uses union by rank)
|
||||
def union(self, parent, rank, x, y):
|
||||
xroot = self.find(parent, x)
|
||||
yroot = self.find(parent, y)
|
||||
|
||||
# Attach smaller rank tree under root of
|
||||
# high rank tree (Union by Rank)
|
||||
if rank[xroot] < rank[yroot]:
|
||||
parent[xroot] = yroot
|
||||
elif rank[xroot] > rank[yroot]:
|
||||
parent[yroot] = xroot
|
||||
|
||||
# If ranks are same, then make one as root
|
||||
# and increment its rank by one
|
||||
else:
|
||||
parent[yroot] = xroot
|
||||
rank[xroot] += 1
|
||||
|
||||
# The main function to construct MST using Kruskal's
|
||||
# algorithm
|
||||
def KruskalMST(self):
|
||||
|
||||
result = [] # This will store the resultant MST
|
||||
|
||||
# An index variable, used for sorted edges
|
||||
i = 0
|
||||
|
||||
# An index variable, used for result[]
|
||||
e = 0
|
||||
|
||||
# Step 1: Sort all the edges in
|
||||
# non-decreasing order of their
|
||||
# weight. If we are not allowed to change the
|
||||
# given graph, we can create a copy of graph
|
||||
self.graph = sorted(self.graph,
|
||||
key=lambda item: item[2])
|
||||
|
||||
parent = []
|
||||
rank = []
|
||||
|
||||
# Create V subsets with single elements
|
||||
for node in range(self.V):
|
||||
parent.append(node)
|
||||
rank.append(0)
|
||||
|
||||
# Number of edges to be taken is equal to V-1
|
||||
while e < self.V - 1:
|
||||
|
||||
# Step 2: Pick the smallest edge and increment
|
||||
# the index for next iteration
|
||||
u, v, w = self.graph[i]
|
||||
i = i + 1
|
||||
x = self.find(parent, u)
|
||||
y = self.find(parent, v)
|
||||
|
||||
# If including this edge doesn't
|
||||
# cause cycle, then include it in result
|
||||
# and increment the index of result
|
||||
# for next edge
|
||||
if x != y:
|
||||
e = e + 1
|
||||
result.append([u, v, w])
|
||||
self.union(parent, rank, x, y)
|
||||
# Else discard the edge
|
||||
|
||||
minimumCost = 0
|
||||
print("Edges in the constructed MST")
|
||||
for u, v, weight in result:
|
||||
minimumCost += weight
|
||||
print("%d -- %d == %d" % (u, v, weight))
|
||||
print("Minimum Spanning Tree", minimumCost)
|
||||
|
||||
|
||||
# Driver's code
|
||||
if __name__ == '__main__':
|
||||
g = Graph(4)
|
||||
g.addEdge(0, 1, 10)
|
||||
g.addEdge(0, 2, 6)
|
||||
g.addEdge(0, 3, 5)
|
||||
g.addEdge(1, 3, 15)
|
||||
g.addEdge(2, 3, 4)
|
||||
|
||||
# Function call
|
||||
g.KruskalMST()
|
Loading…
Reference in New Issue