chore(CPlusPlus): add rod cutting problem (#985)

* Rod cutting in cpp completed

* Update rod-cutting.cpp
pull/865/merge
Jyoti Singh 2022-10-15 21:22:10 +05:30 committed by GitHub
parent 1cc547fd8b
commit 9aae0fe5ea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 77 additions and 0 deletions

View File

@ -0,0 +1,76 @@
// Rod Cutting Problem
// Given a rod of length n and a list of rod prices of length i, where 1 <= i <= n, find the optimal way to cut the rod into smaller rods to maximize profit.
// Rod Cutting Optimal Approach
// We will solve this problem in a bottom-up manner. (iteratively)
// In the bottom-up approach, we solve smaller subproblems first, then move on to larger subproblems.
// The following bottom-up approach computes dp[i], which stores maximum profit achieved from the rod of length i from 1 to len.
// It uses the value of smaller values i already computed.
// Space complexity: O(n)
// Time complexity: O(n^n)
// Solution
#include <iostream>
#include <vector>
#include <climits>
using namespace std;
// Function to find the maximum revenue from cutting a rod of length (len)
// where the rod of length (i) has cost (prices[i - 1])
int RodCutting(vector<int> &prices, int len)
{
// (dp) stores the maximum revenue achieved from cutting a rod of length (from 1 to len)
vector<int> dp(len + 1, 0);
// If the rod length is negative (invalid) or zero there's no revenue from it
if (len <= 0)
{
return 0;
}
// Cut a rod of length (i)
for (int i = 1; i <= len; i++)
{
// divide the rod of length (i) into two rods of lengths (j) and (i - j)
// and store the maximum revenue
for (int j = 0; j < i; j++)
{
// (dp[i]) stores the maximum revenue achieved from cutting a rod of length (i)
dp[i] = max(dp[i], prices[j] + dp[i - j - 1]);
}
}
// (dp[len]) contains the maximum revenue from cutting a rod of length (len)
return dp[len];
}
int main()
{
int len;
cout << "Enter the rod length :";
cin >> len;
vector<int> prices(len);
for (int i = 1; i <= len; i++)
{
cout << "Enter the price of the rod of length " << i << " :";
cin >> prices[i - 1];
}
cout << "Maximum revenue = " << RodCutting(prices, len);
return 0;
}
// Input and output:
// 1. prices[] = [1, 5, 8, 9, 10, 17, 17, 20]
// rod length = 4
// Best: Cut the rod into two pieces of length 2 each to gain revenue of 5 + 5 = 10
// 2. prices[] = [1, 5, 8, 9, 10, 17, 17, 20]
// rod length = 8
// Best: Cut the rod into two pieces of length 2 and 6 to gain revenue of 5 + 17 = 22
// 3. prices[] = [3, 5, 8, 9, 10, 17, 17, 20]
// rod length = 8
// Best: Cut the rod into eight pieces of length 1 to gain revenue of 8 * 3 = 24

View File

@ -42,6 +42,7 @@
- [Matrix chain Multiplication](Dynamic-Programming/matrix-chain-multiplication.cpp)
- [Edit Distance](Dynamic-Programming/edit-distance.cpp)
- [Fibonacci](Dynamic-Programming/fibonacci.cpp)
- [Rod Cutting](Dynamic-Programming/rod-cutting.cpp)
## Graphs