chore(CPlusPlus): add cycle detection (#686)

pull/709/head
Helena He 2022-03-01 08:01:18 -05:00 committed by GitHub
parent 1b5bd0b1eb
commit a1eff4fc8b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 88 additions and 0 deletions

View File

@ -0,0 +1,87 @@
// Program to detect whether a graph contains a cycle. The vertices of the graph are
// placed in disjoint sets. As each edge is iterated through, the subset of the two
// vertices is determined. If the subsets are the same, then a cycle is found.
// Otherwise, the algorithm will join the two subsets together and repeat the process
// until each edge is iterated through or a cycle is found.
#include <algorithm>
#include <iostream>
#include <unordered_set>
#include <utility>
#include <vector>
// Edge list implementation of unweighted, undirected graph
class Graph
{
private:
std::vector<std::pair<int, int>> edgeList;
std::unordered_set<int> uniqueVertices; // Keep track of the number of unique vertices
public:
void insertEdge(int from, int to);
bool isCycle();
int findSet(std::vector<int>& parent, int i);
void unionSet(std::vector<int>& parent, int x, int y);
};
void Graph::insertEdge(int from, int to)
{
edgeList.push_back(std::make_pair(from, to));
uniqueVertices.insert(from);
uniqueVertices.insert(to);
}
bool Graph::isCycle()
{
// Initialize parent vector as disjoint sets
std::vector<int> parent(uniqueVertices.size(), -1);
// Iterate through all graph edges
for (auto i : edgeList)
{
// Find the subset of both vertices of an edge
int x = findSet(parent, i.first);
int y = findSet(parent, i.second);
// If the subsets are the same, then there is a cycle in the graph
if (x == y)
{
return true;
}
unionSet(parent, x, y);
}
return false;
}
int Graph::findSet(std::vector<int>& parent, int i)
{
if (parent[i] == -1)
{
return i;
}
return findSet(parent, parent[i]);
}
void Graph::unionSet(std::vector<int>& parent, int x, int y)
{
parent[x] = y;
}
// Sample test case
// Time complexity is O(E) where E is the number of edges
int main()
{
Graph graph;
graph.insertEdge(0, 1);
graph.insertEdge(0, 2);
graph.insertEdge(1, 2);
if (graph.isCycle())
{
std::cout << "Graph contains a cycle" << std::endl;
}
else{
std::cout << "Graph does not contain a cycle" << std::endl;
}
return 0;
}

View File

@ -50,6 +50,7 @@
- [Dfs traversal with recursion](Graphs/dfs-traversal.cpp)
- [Connected Components](Graphs/total-connected-components.cpp)
- [Dijkstra's Algorithm](Graphs/dijkstra.cpp)
- [Cycle Detection](Graphs/cycle-detection.cpp)
## Multiplication