chore(CPlusPlus): add longest common subsequence and topological sort (#388)
Co-authored-by: Ujjwal <75884061+UG-SEP@users.noreply.github.com>pull/390/head
parent
8703a9e533
commit
a2c225f53e
|
@ -0,0 +1,88 @@
|
|||
/*
|
||||
Printing longest common subseqeunce from 2 subsequences using dp bottom-up approach
|
||||
*/
|
||||
|
||||
#include<bits/stdc++.h>
|
||||
|
||||
using namespace std;
|
||||
|
||||
void longestCommonSubsequence(vector < int > a, vector < int > b) {
|
||||
int n = a.size();
|
||||
int m = b.size();
|
||||
int i, j;
|
||||
vector < vector < int >> dp(n + 1, vector < int > (m + 1, 0)); //creating lookup table to keep track of subsequnces
|
||||
vector < int > result; //result vector
|
||||
for (i = 1; i <= n; i++) {
|
||||
for (j = 1; j <= m; j++) //iterating through all subsequences, if common then increment value of dp[i][j] else consider max from previous
|
||||
{
|
||||
if (a[i - 1] == b[j - 1]) {
|
||||
dp[i][j] = dp[i - 1][j - 1] + 1;
|
||||
} else {
|
||||
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
i = n, j = m;
|
||||
|
||||
while (i > 0 && j > 0) { //traversing dp vector and finding the same elements in both to print result
|
||||
if (a[i - 1] == b[j - 1]) {
|
||||
result.push_back(a[i - 1]);
|
||||
i--;
|
||||
j--;
|
||||
} else if (dp[i][j - 1] > dp[i - 1][j]) {
|
||||
j--;
|
||||
} else
|
||||
i--;
|
||||
|
||||
}
|
||||
|
||||
cout << "Length of lcs " << result.size() << '\n';
|
||||
reverse(result.begin(), result.end()); //reversing to get correct order
|
||||
cout << "\nLongest common subsequence ";
|
||||
for (auto it: result) {
|
||||
cout << it;
|
||||
}
|
||||
cout << "\n";
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
||||
int n, m;
|
||||
cout << "\nEnter no of elements in first sequence"; //Input and output
|
||||
cin >> n;
|
||||
cout << "\nEnter no of elements in second sequence";
|
||||
cin >> m;
|
||||
vector < int > a(n);
|
||||
vector < int > b(m);
|
||||
cout << "\nEnter elements in first sequence\n";
|
||||
for (int i = 0; i < n; i++) {
|
||||
cin >> a[i];
|
||||
}
|
||||
cout << "\nEnter elements in second sequence\n";
|
||||
for (int i = 0; i < m; i++) {
|
||||
cin >> b[i];
|
||||
}
|
||||
|
||||
longestCommonSubsequence(a, b);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
Time and space complexity for subsequence-O(m*n)
|
||||
|
||||
SAMPLE INPUT-
|
||||
Enter no of elements in first sequence5
|
||||
|
||||
Enter no of elements in second sequence3
|
||||
|
||||
Enter elements in first sequence
|
||||
1 2 3 4 5
|
||||
|
||||
Enter elements in second sequence
|
||||
1 3 4
|
||||
Length of lcs 3
|
||||
|
||||
Longest common subsequence 134
|
||||
|
||||
*/
|
|
@ -12,6 +12,11 @@
|
|||
8. [Sorted-Rotated Search Array](Arrays/search-sorted-rotated.cpp)
|
||||
9. [Fractional Knapsack](Arrays/fractional-knapsack.cpp)
|
||||
|
||||
## Dynamic-Programming
|
||||
|
||||
1. [Longest Common Subsequence](Dynamic-Programming/longest-common-subsequence.cpp)
|
||||
|
||||
|
||||
## Graphs
|
||||
|
||||
1. [Bellman Ford Algorithm](Graphs/bellmam-ford.cpp)
|
||||
|
|
Loading…
Reference in New Issue