From b67f5e1786781bb3a9330cccd5b2dc4422c9dfb9 Mon Sep 17 00:00:00 2001 From: Devang-Shah-49 <80088008+Devang-Shah-49@users.noreply.github.com> Date: Thu, 29 Sep 2022 03:44:20 +0530 Subject: [PATCH] chore(CPlusPlus): add n-queens backtracking algorithm (#812) Co-authored-by: Arsenic <54987647+Arsenic-ATG@users.noreply.github.com> --- .../CPlusPlus/Backtracking/n-queens.cpp | 81 +++++++++++++++++++ algorithms/CPlusPlus/README.md | 3 + docs/en/Backtracking/N-Queens.md | 37 +++++++++ 3 files changed, 121 insertions(+) create mode 100644 algorithms/CPlusPlus/Backtracking/n-queens.cpp create mode 100644 docs/en/Backtracking/N-Queens.md diff --git a/algorithms/CPlusPlus/Backtracking/n-queens.cpp b/algorithms/CPlusPlus/Backtracking/n-queens.cpp new file mode 100644 index 00000000..aa05c1e6 --- /dev/null +++ b/algorithms/CPlusPlus/Backtracking/n-queens.cpp @@ -0,0 +1,81 @@ +/* Code contributed by Devang Shah to MakeContributions/DSA GitHub repository + +Below CPlusPlus code displays all possible solutions for a N-Queens problem. +Problem: Given a N x N chess board, arrange N queens in a way such that no two queens attack each other. Two queens are attacking each other if they are in same row, same column or diagonal +Input: N +Output: All solutions ( in grid format {Q - Queen, * - empty cell} ) of the N-queens problem +Time Complexity: O(N!) +*/ + +#include +using namespace std; + +int a[30]; + +int place(int pos) +{ + int i; + for (i = 1; i < pos; i++) + { + if ((a[i] == a[pos]) || ((abs(a[i] - a[pos]) == abs(i - pos)))) + return 0; + } + return 1; +} + +void print_sol(int n) +{ + int i, j; + for (i = 1; i <= n; i++) + { + for (j = 1; j <= n; j++) + { + if (a[i] == j) + cout << "Q\t"; + else + cout << "*\t"; + } + cout << "\n"; + } +} + +void queen(int n) +{ + int k = 1; + a[k] = 0; + int count = 0; + while (k != 0) + { + a[k] = a[k] + 1; + while ((a[k] <= n) && !place(k)) + a[k]++; + if (a[k] <= n) + { + if (k == n) + { + count++; + cout << "Solution #" << count << "\n"; + print_sol(n); + } + else + { + k++; + a[k] = 0; + } + } + else + k--; + } + cout << "\nTotal solutions=" << count; +} + +int main() +{ + unsigned int n; + cin >> n; + if (n < 15) + queen(n); + else + cout << "Invalid input. Program crashed"; + return 0; +} diff --git a/algorithms/CPlusPlus/README.md b/algorithms/CPlusPlus/README.md index 772d3b38..6a713e39 100644 --- a/algorithms/CPlusPlus/README.md +++ b/algorithms/CPlusPlus/README.md @@ -203,3 +203,6 @@ - [Decimal To Octal](Number-system/decimal_to_octal.cpp) - [Octal To Decimal](Number-system/octal_to_decimal.cpp) +## Backtracking + +- [N-Queens Problem](Backtracking/n-queens.cpp) \ No newline at end of file diff --git a/docs/en/Backtracking/N-Queens.md b/docs/en/Backtracking/N-Queens.md new file mode 100644 index 00000000..72a62b21 --- /dev/null +++ b/docs/en/Backtracking/N-Queens.md @@ -0,0 +1,37 @@ +# N-Queens Problem + +N-Queens is a backtracking problem. Given a N x N chess board, our task is to arrange N queens in a way such that no two queens attack each other. Two queens are attacking each other if they are in same row, same column or diagonal. Minimum chess board size should be 4x4. + +## Steps + +1. Each row contains 1 queen +2. For each row, keep track of the valid columns for queen placement. # (NOTE in a clever way) +3. DFS, start from the first row, try each valid column and backtrack if necessary. +4. Note that we can encode left/right diagonals as indexes in the following way: +For any (r, c), + - its top-left to the bottom-right diagonal index is r – c, ∈ (-n, n) + - its bottom-left to the top-right diagonal index is r + c, ∈ [0, 2n) +5. Each (r, c) takes the r-th row, c-th column, and the two diagonal indexes encoded above. +6. Now we can use 4 sets to indicate whether those row/col/diagonal have been taken, if yes, a queen cannot be placed at (r, c). +7. Moreover, if we search via dfs, proceeding row by row, we can avoid keeping # the row set, getting away with 3 sets only (column, and 2 diagonals). +8. Each set indicates whether the column/diagonal with the specified index has been taken. + +## Example + +Given size of Chessboard: **N=4** + +2 solutions exists. They are: +![4-Queens solution image](https://tse3.mm.bing.net/th?id=OIP.9CG0udqpuL95M7-dksk1ZwHaDc&pid=Api&P=0) + +## Time Complexity + +O(N!) + +## Implementation + +- [C++](../../../algorithms/CPlusPlus/Backtracking/n-queens.cpp) + +## Video URL + +[Youtube Video explaining N-queens problem](https://youtu.be/xFv_Hl4B83A) +