chore(CPlusPlus): add coin change problem (#552)
parent
e08d853601
commit
d048d9ab51
|
@ -0,0 +1,72 @@
|
||||||
|
/*
|
||||||
|
Coin Change Problem
|
||||||
|
You are given an infinite supply of coins of each of denominations D = {D0, D1, D2, D3, ...... Dn-1}.
|
||||||
|
You need to figure out the total number of ways W, in which you can make a change for Value V using coins of denominations D.
|
||||||
|
Note : Return 0, if change isn't possible.
|
||||||
|
W can be pretty large so output the answer % mod(10^9 + 7)
|
||||||
|
|
||||||
|
Input Format
|
||||||
|
Line 1 : Integer n i.e. total number of denominations
|
||||||
|
Line 2 : N integers i.e. n denomination values
|
||||||
|
Line 3 : Value V
|
||||||
|
|
||||||
|
Output Format
|
||||||
|
For each test case print the number of ways (W) % mod(10^9 +7) in new line.
|
||||||
|
|
||||||
|
Constraints:
|
||||||
|
1 <= N <= 10
|
||||||
|
1 <= V <= 5000
|
||||||
|
|
||||||
|
Approach:
|
||||||
|
1)sort the coins, this will reduce the time complexity.
|
||||||
|
2)Using every coin count the number of ways of making total value V.
|
||||||
|
|
||||||
|
Time Complexity: O(NV)
|
||||||
|
Space Complexity: O(V)
|
||||||
|
|
||||||
|
Input:
|
||||||
|
3
|
||||||
|
1 2 3
|
||||||
|
9
|
||||||
|
|
||||||
|
Output:
|
||||||
|
12
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include<iostream>
|
||||||
|
#include<algorithm>
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
const int mod = (int)1e9 + 7;
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
|
||||||
|
cout<<"Enter the total number of coin denominations: ";
|
||||||
|
int n;
|
||||||
|
cin >> n;
|
||||||
|
int *coins = new int[n];
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
cin >> coins[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
sort(coins, coins + n);
|
||||||
|
|
||||||
|
cout<<"Enter the target value: ";
|
||||||
|
int V;
|
||||||
|
cin >> V;
|
||||||
|
|
||||||
|
int dp[V + 1];
|
||||||
|
for (int i = 0; i <= V; i++)dp[i] = 0;
|
||||||
|
|
||||||
|
dp[0] = 1;
|
||||||
|
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
for (int j = coins[i]; j <= V; j++) {
|
||||||
|
dp[j] = (dp[j] + dp[j - coins[i]]) % mod;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
cout << "Total number of ways to make target value are: " << dp[V] << endl;
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
|
@ -26,6 +26,8 @@
|
||||||
- [0/1-knapsack](Dynamic-Programming/01-knapsack.cpp)
|
- [0/1-knapsack](Dynamic-Programming/01-knapsack.cpp)
|
||||||
- [Matrix chain Multiplication](Dynamic-Programming/matrix-chain-multiplication.cpp)
|
- [Matrix chain Multiplication](Dynamic-Programming/matrix-chain-multiplication.cpp)
|
||||||
- [Edit Distance](Dynamic-Programming/edit-distance.cpp)
|
- [Edit Distance](Dynamic-Programming/edit-distance.cpp)
|
||||||
|
- [Coin Change](Dynamic-Programming/coin-change-problem.cpp)
|
||||||
|
|
||||||
|
|
||||||
## Graphs
|
## Graphs
|
||||||
- [Bellman Ford Algorithm](Graphs/bellman-ford.cpp)
|
- [Bellman Ford Algorithm](Graphs/bellman-ford.cpp)
|
||||||
|
@ -134,3 +136,4 @@
|
||||||
- [Sum of all elements of an array](Recursion/Sum-of-all-elements-in-an-array.cpp)
|
- [Sum of all elements of an array](Recursion/Sum-of-all-elements-in-an-array.cpp)
|
||||||
- [Decimal number to Binary conversion](Recursion/decimal-to-binary-conversion.cpp)
|
- [Decimal number to Binary conversion](Recursion/decimal-to-binary-conversion.cpp)
|
||||||
- [Sum of digits of a decimal integer](Recursion/sum-of-digits-of-an-integer.cpp)
|
- [Sum of digits of a decimal integer](Recursion/sum-of-digits-of-an-integer.cpp)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue