enh(CPlusPlus): heap-sort (#290)
* Update heap-sort.cpp * Update heap-sort.cpp C++ can still allocate arrays on the heap with dynamic size.pull/291/head
parent
4d4e3319b6
commit
d2205468ef
|
@ -1,66 +1,88 @@
|
||||||
#include <iostream>
|
/* Heap sort in c++ */
|
||||||
using namespace std;
|
|
||||||
void heapify(int a[], int n, int i);
|
|
||||||
void heapSort(int a[], int n);
|
|
||||||
|
|
||||||
// Driver code
|
#include <iostream>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
// A function to heapify the array.
|
||||||
|
void MaxHeapify(int a[], int i, int n)
|
||||||
|
{
|
||||||
|
int j, temp;
|
||||||
|
temp = a[i];
|
||||||
|
j = 2*i;
|
||||||
|
|
||||||
|
while (j <= n)
|
||||||
|
{
|
||||||
|
if (j < n && a[j+1] > a[j])
|
||||||
|
j = j+1;
|
||||||
|
// Break if parent value is already greater than child value.
|
||||||
|
if (temp > a[j])
|
||||||
|
break;
|
||||||
|
// Switching value with the parent node if temp < a[j].
|
||||||
|
else if (temp <= a[j])
|
||||||
|
{
|
||||||
|
a[j/2] = a[j];
|
||||||
|
j = 2*j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
a[j/2] = temp;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
void HeapSort(int a[], int n)
|
||||||
|
{
|
||||||
|
int i, temp;
|
||||||
|
for (i = n; i >= 2; i--)
|
||||||
|
{
|
||||||
|
// Storing maximum value at the end.
|
||||||
|
temp = a[i];
|
||||||
|
a[i] = a[1];
|
||||||
|
a[1] = temp;
|
||||||
|
// Building max heap of remaining element.
|
||||||
|
MaxHeapify(a, 1, i - 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
void Build_MaxHeap(int a[], int n)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
for(i = n/2; i >= 1; i--)
|
||||||
|
MaxHeapify(a, i, n);
|
||||||
|
}
|
||||||
int main()
|
int main()
|
||||||
{
|
{
|
||||||
cout << "Enter the length of array" << endl;
|
int n, i;
|
||||||
int n;
|
cout<<"\nEnter the number of data element to be sorted: ";
|
||||||
cin >> n;
|
cin>>n;
|
||||||
int *a = new int(n);
|
n++;
|
||||||
// Getting elements of array
|
int* arr = new int[n];
|
||||||
cout << "Enter the elements of array" << endl;
|
for(i = 1; i < n; i++)
|
||||||
for (int i = 0; i < n; i++)
|
{
|
||||||
cin >> a[i];
|
cout<<"Enter element "<<i<<": ";
|
||||||
cout << "Original array:\n";
|
cin>>arr[i];
|
||||||
for (int i = 0; i < n; i++)
|
}
|
||||||
cout << a[i] << " ";
|
// Building max heap.
|
||||||
heapSort(a, n);
|
Build_MaxHeap(arr, n-1);
|
||||||
cout << "\nSorted array:\n";
|
HeapSort(arr, n-1);
|
||||||
for (int i = 0; i < n; i++)
|
|
||||||
cout << a[i] << " ";
|
// Printing the sorted data.
|
||||||
delete (a);
|
cout<<"\nSorted Data ";
|
||||||
|
|
||||||
|
for (i = 1; i < n; i++)
|
||||||
|
cout<<"->"<<arr[i];
|
||||||
|
cout<<"\nTime Complexity: Best case = Avg case = Worst case = O(n logn)";
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
// To heapify a subtree rooted with node i which is an index in a[]
|
/* Runtime test case:-
|
||||||
void heapify(int a[], int n, int i)
|
|
||||||
{
|
|
||||||
int largest = i; // Initialize largest as root
|
|
||||||
int l = 2 * i + 1;
|
|
||||||
int r = 2 * i + 2;
|
|
||||||
|
|
||||||
// If left child is larger than root
|
Enter the number of data elements to be sorted: 7
|
||||||
if (l < n && a[l] > a[largest])
|
Enter element 1: 10
|
||||||
largest = l;
|
Enter element 2: 8
|
||||||
|
Enter element 3: 12
|
||||||
|
Enter element 4: 1
|
||||||
|
Enter element 5: 2
|
||||||
|
Enter element 6: 0
|
||||||
|
Enter element 7: 15
|
||||||
|
|
||||||
// If right child is larger than largest so far
|
Sorted Data ->0->1->2->8->10->12->15
|
||||||
if (r < n && a[r] > a[largest])
|
Time Complexity: Best case = Avg case = Worst case = O(n logn) */
|
||||||
largest = r;
|
|
||||||
|
|
||||||
// If largest is not root
|
|
||||||
if (largest != i)
|
|
||||||
{
|
|
||||||
swap(a[i], a[largest]);
|
|
||||||
// Recursively heapify the affected sub-tree
|
|
||||||
heapify(a, n, largest);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void heapSort(int a[], int n)
|
|
||||||
{
|
|
||||||
// Build heap (rearrange array)
|
|
||||||
for (int i = n / 2 - 1; i >= 0; i--)
|
|
||||||
heapify(a, n, i);
|
|
||||||
// One by one extract an element from heap
|
|
||||||
for (int i = n - 1; i > 0; i--)
|
|
||||||
{
|
|
||||||
// Move current root to end
|
|
||||||
swap(a[0], a[i]);
|
|
||||||
// call max heapify on the reduced heap
|
|
||||||
heapify(a, i, 0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
Loading…
Reference in New Issue