chore(CPlusPlus): add print all nodes at a level on trees (#696)
Co-authored-by: Ming Tsai <37890026+ming-tsai@users.noreply.github.com> Co-authored-by: Rahul Rajeev Pillai <66192267+Ashborn-SM@users.noreply.github.com>pull/720/head
parent
6d91e800be
commit
e49aea4487
|
@ -140,6 +140,7 @@
|
|||
- [Finding the elements of a tree visible from top view](Trees/Top-View-Of-A-Tree.cpp)
|
||||
- [Binary Tree Implementation](Trees/binary-tree-implementation.cpp)
|
||||
- [Iterative Segment Tree](Trees/IterativeSegmentTree.cpp)
|
||||
- [Print all nodes at level k](Trees/print-all-nodes-at-a-level.cpp)
|
||||
- [Sum of right leaves](Trees/sum-of-right-leaves.cpp)
|
||||
|
||||
## Trie
|
||||
|
|
|
@ -0,0 +1,83 @@
|
|||
/* Description - We have to print all nodes at a level 'k' of the tree.
|
||||
|
||||
For example- If we are given the following tree, the nodes at level 1 are 1, nodes at level 2 are 2,3, nodes at level 3 are 7, 9 and nodes at level 4 are 21 and 11.
|
||||
(Note- The level starts from 1, i.e root is at level 1)
|
||||
|
||||
1 level 1
|
||||
/ \
|
||||
2 3 level 2
|
||||
/ \
|
||||
7 9 level 3
|
||||
/ \
|
||||
21 11 level 4
|
||||
*/
|
||||
|
||||
#include<bits/stdc++.h>
|
||||
using namespace std;
|
||||
|
||||
typedef struct Node
|
||||
{
|
||||
int data;
|
||||
struct Node* left;
|
||||
struct Node* right;
|
||||
|
||||
Node(int val)
|
||||
{
|
||||
data= val;
|
||||
left=right=NULL;
|
||||
}
|
||||
}node;
|
||||
|
||||
//function for level order traversal
|
||||
void levelorder(Node* root, int k)
|
||||
{
|
||||
if(root==NULL)
|
||||
return;
|
||||
|
||||
queue<Node*> q;
|
||||
|
||||
q.push(root);
|
||||
int count=0; //for calculating at which level we are.
|
||||
|
||||
while(!q.empty())
|
||||
{
|
||||
count++; //increment the value of count as level is incremented
|
||||
int n=q.size();
|
||||
|
||||
for(int i=0; i<n; i++)
|
||||
{
|
||||
Node* temp=q.front();
|
||||
q.pop();
|
||||
if(count==k) { //if level is equal to the required level, then print its nodes
|
||||
cout<<temp->data<<" ";
|
||||
}
|
||||
if(temp->left!=NULL){
|
||||
q.push(temp->left);
|
||||
}
|
||||
if(temp->right!=NULL){
|
||||
q.push(temp->right);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//main function
|
||||
int main()
|
||||
{
|
||||
node*root=new node(1);
|
||||
root->left=new node(2);
|
||||
root->right=new node(3);
|
||||
root->right->left=new node(7);
|
||||
root->right->right=new node(9);
|
||||
root->right->left->left=new node(21);
|
||||
root->right->right->right=new node(11);
|
||||
|
||||
int k = 3; // here we have taken k=3 (third level of tree)
|
||||
|
||||
levelorder(root,k); //calling level order function
|
||||
}
|
||||
|
||||
// The output of the above program will be 7 9. Since k=3 and nodes at level 3 are 7 and 9.
|
||||
|
||||
// Time Complexity: O(n) where n is the number of nodes in the binary tree
|
||||
// Space Complexity: O(n) where n is the number of nodes in the binary tree
|
Loading…
Reference in New Issue