Merge branch 'main' into my
commit
eed3f65b27
|
@ -8,7 +8,9 @@ jobs:
|
|||
codespell:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/setup-python@v2
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.x
|
||||
- run: pip install codespell
|
||||
- run: codespell --ignore-words-list="ans,nnumber,nin,Hel" --quiet-level=2 --skip="**/**/package-lock.json,./docs/pt,./docs/es,./docs/tr,./.github,./algorithms/CSharp/test"
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
#include <bits/stdc++.h>
|
||||
using namespace std;
|
||||
|
||||
bool areBracketsBalanced (string expr)
|
||||
{
|
||||
|
||||
stack < char >s;
|
||||
char x;
|
||||
|
||||
|
||||
// Traversing the Expression
|
||||
for (int i = 0; i < expr.length (); i++)
|
||||
if (expr[i] == '(' || expr[i] == '[' ||expr[i] == '{')
|
||||
{
|
||||
// Push the element in the stack
|
||||
s.push (expr[i]);
|
||||
continue;
|
||||
}
|
||||
|
||||
// IF current current character is not opening
|
||||
// bracket, then it must be closing. So stack
|
||||
// cannot be empty at this point.
|
||||
|
||||
if (s.empty ())
|
||||
return false;
|
||||
|
||||
switch (expr[i])
|
||||
{
|
||||
|
||||
case ')': // Store the top element in a
|
||||
x = s.top ();
|
||||
s.pop ();
|
||||
|
||||
if (x == '{' || x == '[')
|
||||
return false;
|
||||
|
||||
break;
|
||||
|
||||
case '}': // Store the top element in b
|
||||
x = s.top ();
|
||||
s.pop ();
|
||||
if (x == '(' || x == '[')
|
||||
return false;
|
||||
break;
|
||||
case ']': x = s.top ();
|
||||
s.pop ();
|
||||
if (x == '(' || x == '{')
|
||||
return false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return (s.empty ());
|
||||
}
|
||||
// Driver code
|
||||
int main ()
|
||||
{
|
||||
string expr = "{()}[]";
|
||||
// Function call
|
||||
if (areBracketsBalanced (expr))
|
||||
cout << "Balanced";
|
||||
else
|
||||
cout << "Not Balanced";
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Output:-
|
||||
// Enter the brackets to check if its balanced or not : [{}]
|
||||
// Balanced
|
||||
// Enter the brackets to check if its balanced or not : {]
|
||||
Not Balanced
|
|
@ -20,7 +20,7 @@ int maxSubArrSum_A(int a[],int n){
|
|||
return maxSum;
|
||||
}
|
||||
|
||||
// Appraoch B - Cumulative Sum Approach O(n^2)
|
||||
// Approach B - Cumulative Sum Approach O(n^2)
|
||||
int maxSubArrSum_B(int a[],int n){
|
||||
int currSum[n+1]; currSum[0] = 0;
|
||||
for(int i=1;i<=n;++i){
|
||||
|
@ -66,4 +66,4 @@ int main(){
|
|||
cout<<maxSubArrSum_B(b,7)<<endl;
|
||||
cout<<maxSubArrSum_C(b,7)<<endl;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
// Rod Cutting Problem
|
||||
// Given a rod of length n and a list of rod prices of length i, where 1 <= i <= n, find the optimal way to cut the rod into smaller rods to maximize profit.
|
||||
|
||||
// Rod Cutting Optimal Approach
|
||||
// We will solve this problem in a bottom-up manner. (iteratively)
|
||||
// In the bottom-up approach, we solve smaller subproblems first, then move on to larger subproblems.
|
||||
// The following bottom-up approach computes dp[i], which stores maximum profit achieved from the rod of length i from 1 to len.
|
||||
// It uses the value of smaller values i already computed.
|
||||
|
||||
// Space complexity: O(n)
|
||||
// Time complexity: O(n^n)
|
||||
|
||||
|
||||
// Solution
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <climits>
|
||||
|
||||
using namespace std;
|
||||
|
||||
// Function to find the maximum revenue from cutting a rod of length (len)
|
||||
// where the rod of length (i) has cost (prices[i - 1])
|
||||
int RodCutting(vector<int> &prices, int len)
|
||||
{
|
||||
// (dp) stores the maximum revenue achieved from cutting a rod of length (from 1 to len)
|
||||
vector<int> dp(len + 1, 0);
|
||||
// If the rod length is negative (invalid) or zero there's no revenue from it
|
||||
if (len <= 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
// Cut a rod of length (i)
|
||||
for (int i = 1; i <= len; i++)
|
||||
{
|
||||
// divide the rod of length (i) into two rods of lengths (j) and (i - j)
|
||||
// and store the maximum revenue
|
||||
for (int j = 0; j < i; j++)
|
||||
{
|
||||
// (dp[i]) stores the maximum revenue achieved from cutting a rod of length (i)
|
||||
dp[i] = max(dp[i], prices[j] + dp[i - j - 1]);
|
||||
}
|
||||
}
|
||||
// (dp[len]) contains the maximum revenue from cutting a rod of length (len)
|
||||
return dp[len];
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
int len;
|
||||
cout << "Enter the rod length :";
|
||||
cin >> len;
|
||||
|
||||
vector<int> prices(len);
|
||||
for (int i = 1; i <= len; i++)
|
||||
{
|
||||
cout << "Enter the price of the rod of length " << i << " :";
|
||||
cin >> prices[i - 1];
|
||||
}
|
||||
|
||||
cout << "Maximum revenue = " << RodCutting(prices, len);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// Input and output:
|
||||
// 1. prices[] = [1, 5, 8, 9, 10, 17, 17, 20]
|
||||
// rod length = 4
|
||||
// Best: Cut the rod into two pieces of length 2 each to gain revenue of 5 + 5 = 10
|
||||
|
||||
// 2. prices[] = [1, 5, 8, 9, 10, 17, 17, 20]
|
||||
// rod length = 8
|
||||
// Best: Cut the rod into two pieces of length 2 and 6 to gain revenue of 5 + 17 = 22
|
||||
|
||||
// 3. prices[] = [3, 5, 8, 9, 10, 17, 17, 20]
|
||||
// rod length = 8
|
||||
// Best: Cut the rod into eight pieces of length 1 to gain revenue of 8 * 3 = 24
|
|
@ -31,7 +31,7 @@
|
|||
- [Next permutation](Arrays/next-permutation.cpp)
|
||||
- [Maximum Minimum Average of numbers](Arrays/max-min-avg.cpp)
|
||||
- [Sparse Matrix](Arrays/sparse_matrix.cpp)
|
||||
|
||||
- [Balanced Parenthesis](Arrays/balanced-parenthesis.cpp)
|
||||
|
||||
|
||||
## Dynamic-Programming
|
||||
|
@ -42,6 +42,7 @@
|
|||
- [Matrix chain Multiplication](Dynamic-Programming/matrix-chain-multiplication.cpp)
|
||||
- [Edit Distance](Dynamic-Programming/edit-distance.cpp)
|
||||
- [Fibonacci](Dynamic-Programming/fibonacci.cpp)
|
||||
- [Rod Cutting](Dynamic-Programming/rod-cutting.cpp)
|
||||
|
||||
## Graphs
|
||||
|
||||
|
@ -156,7 +157,7 @@
|
|||
## Trie
|
||||
|
||||
- [Trie for searching](Trie/trie_search.cpp)
|
||||
- [Trie for insert search and prefix_search](Trie/trie_startWith.cpp)
|
||||
- [Trie for prefix_search](Trie/trie_startWith.cpp)
|
||||
- [Trie for delete](Trie/trie_delete.cpp)
|
||||
|
||||
# Maths
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
#include<bits/stdc++.h>
|
||||
using namespace std;
|
||||
typedef long long ll;
|
||||
#define inf 1e9;
|
||||
#define inf2 2e18;
|
||||
|
||||
|
||||
|
||||
struct custom_hash {
|
||||
static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31);}
|
||||
size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); }
|
||||
};
|
||||
|
||||
|
||||
|
||||
struct TrieNode{ TrieNode* child[26]; bool isEnd;
|
||||
TrieNode(){ isEnd = false; for(int i = 0; i<26; i++){ child[i] = NULL; } }
|
||||
};
|
||||
struct TrieNode* rootTrie;
|
||||
void addTrie(string& s){ TrieNode* curr = rootTrie; for(int i = 0; i<s.length(); i++){ int n = s[i] - 'a';if(curr->child[n] == NULL){curr->child[n] = new TrieNode();} curr = curr->child[n]; } curr->isEnd = true; }
|
||||
bool searchTrie(string& s){TrieNode* curr = rootTrie;for(int i = 0; i<s.length(); i++){int n = s[i] - 'a';if(!curr->child[n]) return false;curr = curr->child[n];}return curr->isEnd;}
|
||||
bool startsWithTrie(string s) {int n = s.length();TrieNode* curr = rootTrie;for(int i =0 ; i<n; i++){int k = s[i] - 'a';if(curr->child[k] == NULL) return false;curr = curr->child[k];}return true;}
|
||||
|
||||
|
||||
|
||||
int main(){
|
||||
//Jai Shree Ram
|
||||
ios_base::sync_with_stdio(false);
|
||||
cin.tie(NULL);
|
||||
|
||||
string keys[] = {"the", "a", "there", "answer", "any", "by", "bye", "their" };
|
||||
int n = sizeof(keys)/sizeof(keys[0]);
|
||||
struct TrieNode *root = getNode();
|
||||
|
||||
for (int i = 0; i < n; i++) insert(root, keys[i]);
|
||||
|
||||
char output[][32] = {"Not present in trie", "Present in trie"};
|
||||
|
||||
cout<<"the"<<" --- "<<output[search(root, "the")]<<endl;
|
||||
cout<<"these"<<" --- "<<output[search(root, "these")]<<endl;
|
||||
cout<<"their"<<" --- "<<output[search(root, "their")]<<endl;
|
||||
cout<<"thaw"<<" --- "<<output[search(root, "thaw")]<<endl;
|
||||
return 0;
|
||||
}
|
|
@ -3,6 +3,7 @@
|
|||
## Arrays
|
||||
|
||||
- [Counting Inversions](src/arrays/counting-inversions.js)
|
||||
- [Single Occurring Element](src/arrays/single-occurring-element.js)
|
||||
|
||||
## Linked Lists
|
||||
|
||||
|
|
|
@ -0,0 +1,18 @@
|
|||
// Problem: Given an array of integers,
|
||||
// every element appears twice except for one. Find that single one.
|
||||
// Space Complexity: O(1)
|
||||
// Time Complexity: O(n)
|
||||
|
||||
function singleOccurringElement(arr) {
|
||||
let result = 0;
|
||||
for (const el of arr) {
|
||||
result ^= el;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
const arr = [2, 5, 7, 3, 1, 8, 8, 9, 4, 2, 7, 1, 4, 9, 5];
|
||||
console.log(singleOccurringElement(arr));
|
||||
|
||||
// Input: [2, 5, 7, 3, 1, 8, 8, 9, 4, 2, 7, 1, 4, 9, 5]
|
||||
// Output: 3
|
|
@ -1,5 +1,6 @@
|
|||
// Arrays
|
||||
require('./arrays/counting-inversions');
|
||||
require('./arrays/single-occurring-element');
|
||||
|
||||
// Linked Lists
|
||||
require('./linked-lists/singly');
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
- [Missing Number](arrays/missing_number.py)
|
||||
- [Remove duplicate items](arrays/remove_duplicates_list.py)
|
||||
- [Dutch National Flag Algorithm](arrays/dutch_national_flag_algo.py)
|
||||
- [Max Sub Array Sum](arrays/max_sub_array_sum.py)
|
||||
|
||||
## Linked Lists
|
||||
- [Doubly](linked_lists/doubly.py)
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
"""
|
||||
Algorithm Name: Max Sum of Sub Array
|
||||
Time Complexity: O(n)
|
||||
Explanation: arr = [3, 2, -4, 9]
|
||||
at the start of the algorithm
|
||||
assign current sum (max_sum_curr) = max sum(max_sum) = arr[0]
|
||||
(for) iterate from arr[1] to arr[n] and do
|
||||
max_sum_curr = arr[i] if arr[i] > arr[i] + max_sum_curr
|
||||
else
|
||||
max_sum_curr = max_sum_curr + arr[i]
|
||||
max_sum = max_sum if max_sum > max_sum_curr
|
||||
else
|
||||
max_sum = max_sum_curr
|
||||
end
|
||||
return max_sum
|
||||
"""
|
||||
|
||||
def max_sub_arr_sum(arr):
|
||||
arr_size = len(arr)
|
||||
max_sum = arr[0]
|
||||
max_sum_curr = arr[0]
|
||||
|
||||
for i in range(1, arr_size):
|
||||
max_sum_curr = max(arr[i], max_sum_curr + arr[i])
|
||||
max_sum = max(max_sum, max_sum_curr)
|
||||
|
||||
return max_sum
|
||||
|
||||
|
||||
# print("Enter array of numbers (Ex: 1 2 3 4 for [1, 2, 3, 4])")
|
||||
arr = [3, 2, -4, 9] # list(map(int, input().split()))
|
||||
print("Maximum Sub Array Sum is", max_sub_arr_sum(arr))
|
|
@ -1,11 +1,17 @@
|
|||
# Algorithms
|
||||
|
||||
## Backtracking
|
||||
- [N-Queens](./Backtracking/N-Queens.md)
|
||||
|
||||
## Lists
|
||||
- [Singly linked list](./Lists/singly-linked-list.md)
|
||||
- [Doubly linked list](./Lists/doubly-linked-list.md)
|
||||
|
||||
## Sorting
|
||||
## Searching
|
||||
- [Binary Search](./Searching/Binary-Search.MD)
|
||||
- [Linear Search](./Searching/Linear-Search.md)
|
||||
|
||||
## Sorting
|
||||
- [Bubble Sort](./Sorting/Bubble-Sort.md)
|
||||
- [Merge Sort](./Sorting/Merge-Sort.md)
|
||||
- [Selection Sort](./Sorting/Selection-Sort.md)
|
||||
|
@ -13,16 +19,13 @@
|
|||
- [Heap Sort](./Sorting/Heap-Sort.md)
|
||||
- [Quick Sort](./Sorting/Quick-Sort.md)
|
||||
- [Cycle Sort](./Sorting/Cycle-Sort.md)
|
||||
- [Radix Sort](./Sorting/Radix-Sort.md)
|
||||
|
||||
## Strings
|
||||
|
||||
- [Palindrome](./Strings/Palindrome.md)
|
||||
|
||||
## Searching
|
||||
|
||||
- [Binary Search](./Searching/Binary-Search.MD)
|
||||
- [Linear Search](./Searching/Linear-Search.md)
|
||||
## Tree
|
||||
- [Min Heap](./Tree/min-heap.md)
|
||||
|
||||
## Others
|
||||
|
||||
[How to add new algorithm documentation?](./CONTRIBUTING.md)
|
||||
|
|
Loading…
Reference in New Issue