chore: remove unncessary paths
parent
799b40b7e3
commit
eef58b85d1
|
@ -1,7 +1,7 @@
|
|||
# C++
|
||||
|
||||
## Arrays
|
||||
1. [Count Inversions](Arrays/count_inversions.cpp)
|
||||
1. [Counting Inversions](Arrays/counting-inversions.cpp)
|
||||
2. [Dutch Flag Algorithm](Arrays/dutch-flag-algo.cpp)
|
||||
3. [Left Rotation](Arrays/left-rotation.cpp)
|
||||
4. [Max Subarray Sum](Arrays/max-subarray-sum.cpp)
|
||||
|
@ -27,6 +27,7 @@
|
|||
2. [Jump Search](Searching/jump-search.cpp)
|
||||
3. [Binary Search](Searching/binary-search.cpp)
|
||||
4. [Finding squareroot using Binary search](Searching/sqrt-monotonic-binary-search.cpp)
|
||||
3. [KMP String Searching](Searching/kmp.cpp)
|
||||
|
||||
## Stacks
|
||||
1. [Balancing Parenthesis](Stacks/balanced-parenthesis.cpp)
|
||||
|
@ -36,7 +37,7 @@
|
|||
2. [Insertion Sort](Sorting/insertion-sort.cpp)
|
||||
3. [Quicksort](Sorting/quick-sort.cpp)
|
||||
4. [Selection Sort](Sorting/selection-sort.cpp)
|
||||
5. [3 way Quick Sort](Sorting/3way_quick_sort.cpp)
|
||||
5. [3 way Quick Sort](Sorting/3way-quick-sort.cpp)
|
||||
6. [Bucket Sort](Sorting/bucket-sort.cpp)
|
||||
7. [Comb Sort](Sorting/comb-sort.cpp)
|
||||
8. [Counting Sort](Sorting/counting-sort.cpp)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Python
|
||||
|
||||
## Arrays
|
||||
1. [Count Inversions](arrays/count_inversions.py)
|
||||
1. [Count Inversions](arrays/counting_inversions.py)
|
||||
|
||||
## Linked Lists
|
||||
1. [Doubly](linked_lists/doubly.py)
|
||||
|
|
|
@ -2,17 +2,7 @@
|
|||
|
||||
# Algorithms related to arrays
|
||||
|
||||
### C or C++
|
||||
### C
|
||||
|
||||
1. [Counting Inversions](c-or-cpp/count-inversions.cpp)
|
||||
2. [Dutch Flag Algo](c-or-cpp/dutch-flag-algo.cpp)
|
||||
3. [Left Rotation of Array](c-or-cpp/left-rotation.cpp)
|
||||
4. [Shift Negatives in Array](c-or-cpp/shift-negatives.cpp)
|
||||
5. [Maximum Subarray Sum](c-or-cpp/max-subarray-sum.cpp)
|
||||
6. [Unique Elements in an Array](c-or-cpp/unique-elements-in-an-array.c)
|
||||
7. [Sorting arrays](c-or-cpp/array.cpp)
|
||||
8. [Division of no.](c-or-cpp/division.cpp)
|
||||
9. [Finding large no.](c-or-cpp/finding-large-number.cpp)
|
||||
10. [Variable declaration](c-or-cpp/variable-declaration.cpp)
|
||||
11. [Data before and after sorting](c-or-cpp/data-before-sort.cpp)
|
||||
12. [Even and odd no. ](c-or-cpp/even-and-odd.c)
|
||||
1. [Unique Elements in an Array](c-or-cpp/unique-elements-in-an-array.c)
|
||||
2. [Even and odd no. ](c-or-cpp/even-and-odd.c)
|
||||
|
|
|
@ -1,8 +1,6 @@
|
|||
# Graphs
|
||||
|
||||
### C or C++
|
||||
### C
|
||||
|
||||
1. [Kruskal Algorithm](c-or-cpp/kruskal-algorithm.cpp)
|
||||
2. [Bellman Ford Algorithm](c-or-cpp/bellman-ford.cpp)
|
||||
3. [Prim's Algorithm](c-or-cpp/Prim's-algorithm.c)
|
||||
1. [Prim's Algorithm](c-or-cpp/Prim's-algorithm.c)
|
||||
|
||||
|
|
|
@ -1,11 +1,5 @@
|
|||
# Linked Lists
|
||||
|
||||
### C or C++
|
||||
### C
|
||||
|
||||
1. [Singly Linked List](c-or-cpp/singly.cpp)
|
||||
2. [Reversing Linked List](c-or-cpp/reverse.cpp)
|
||||
3. [Doubly Linked List](c-or-cpp/doubly.cpp)
|
||||
4. [Circular Linked List](c-or-cpp/circular.cpp)
|
||||
5. [Insertion Linked List](c-or-cpp/all-possible-insertion.cpp)
|
||||
6. [Josephus Problem Using Circular Linked List](c-or-cpp/josephus-problem.c)
|
||||
7. [Merge Two Singly linked List](c-or-cpp/merge.cpp)
|
||||
1. [Josephus Problem Using Circular Linked List](c-or-cpp/josephus-problem.c)
|
||||
|
|
|
@ -1,9 +0,0 @@
|
|||
# Multiplication algorithms
|
||||
|
||||
### C or C++
|
||||
|
||||
1. [Karatsuba Multiplication](c-or-cpp/karatsuba.cpp)
|
||||
|
||||
### Python
|
||||
|
||||
1. [Karatsuba Multiplication](python/karatsuba.py)
|
|
@ -1,7 +1,5 @@
|
|||
# Queues
|
||||
|
||||
### C or C++
|
||||
### C
|
||||
|
||||
1. [Queue using linked list](c-or-cpp/queue-linked-list.cpp)
|
||||
2. [Circular Queue using linked list](c-or-cpp/circular-queue-linked-list.cpp)
|
||||
3. [Double Ended Queue (using arrays)](c-or-cpp/double-ended-queue-using-array.c)
|
||||
1. [Double Ended Queue (using arrays)](c-or-cpp/double-ended-queue-using-array.c)
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
# Scheduling Algorithms
|
||||
|
||||
### Python
|
||||
|
||||
1. [Interval Scheduling](python/interval-scheduling.py)
|
|
@ -1,321 +0,0 @@
|
|||
/**
|
||||
* @author Tawfik Yasser
|
||||
* @since 4-2021
|
||||
* */
|
||||
// Program imports below
|
||||
import java.util.ArrayList;
|
||||
import java.util.Scanner;
|
||||
// The following class to represent the process
|
||||
// ** In future i will fix the name "process" to "Process"
|
||||
class process {
|
||||
String name;
|
||||
int burset_time;
|
||||
int arrive_time;
|
||||
int waiting_time;
|
||||
int turn_round_time;
|
||||
int temp_time;
|
||||
int queueNumber;
|
||||
|
||||
//Priority Algorithm
|
||||
private int processID;
|
||||
private int priority;
|
||||
|
||||
public process() {
|
||||
this.processID = 0;
|
||||
this.priority = 0;
|
||||
this.arrive_time = 0;
|
||||
this.burset_time = 0;
|
||||
}
|
||||
|
||||
public process(String name, int burset_time, int arrive_time) {
|
||||
this.arrive_time = arrive_time;
|
||||
this.burset_time = burset_time;
|
||||
this.name = name;
|
||||
this.temp_time = burset_time;
|
||||
}
|
||||
|
||||
public process(String name, int burset_time, int arrive_time, int queueNumber) {
|
||||
this.name = name;
|
||||
this.burset_time = burset_time;
|
||||
this.arrive_time = arrive_time;
|
||||
this.queueNumber = queueNumber;
|
||||
}
|
||||
|
||||
public process(int processID, int priority, int arrivingTime, int burstTime) {
|
||||
this.processID = processID;
|
||||
this.priority = priority;
|
||||
this.arrive_time = arrivingTime;
|
||||
this.burset_time = burstTime;
|
||||
}
|
||||
|
||||
public int getProcessID() {
|
||||
return processID;
|
||||
}
|
||||
|
||||
public void setProcessID(int processID) {
|
||||
this.processID = processID;
|
||||
}
|
||||
|
||||
public int getPriority() {
|
||||
return priority;
|
||||
}
|
||||
|
||||
public void setPriority(int priority) {
|
||||
this.priority = priority;
|
||||
}
|
||||
|
||||
public void setWaiting_time(int waiting_time) {
|
||||
this.waiting_time = waiting_time;
|
||||
}
|
||||
|
||||
public void setTurn_round_time(int turn_round_time) {
|
||||
this.turn_round_time = turn_round_time;
|
||||
}
|
||||
|
||||
public void setTemp_burset_time(int temp_burset_time) {
|
||||
this.temp_time = temp_burset_time;
|
||||
}
|
||||
|
||||
public int getWaiting_time() {
|
||||
return waiting_time;
|
||||
}
|
||||
|
||||
public int getTurn_round_time() {
|
||||
return turn_round_time;
|
||||
}
|
||||
|
||||
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
public void setName(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
public void setBurset_time(int burset_time) {
|
||||
this.burset_time = burset_time;
|
||||
}
|
||||
|
||||
public void setArrive_time(int arrive_time) {
|
||||
this.arrive_time = arrive_time;
|
||||
}
|
||||
|
||||
public int getBurset_time() {
|
||||
return burset_time;
|
||||
}
|
||||
|
||||
public int getTemp_burset_time() {
|
||||
return temp_time;
|
||||
}
|
||||
|
||||
public int getArrive_time() {
|
||||
return arrive_time;
|
||||
}
|
||||
|
||||
public int getQueueNumber() {
|
||||
return queueNumber;
|
||||
}
|
||||
|
||||
public void setQueueNumber(int queueNumber) {
|
||||
this.queueNumber = queueNumber;
|
||||
}
|
||||
|
||||
public void reduceTime(int time) {
|
||||
if(burset_time >= time)
|
||||
burset_time = burset_time - time;
|
||||
}
|
||||
}
|
||||
|
||||
// ****************** The following class to start the MLQ Algorithm, Called from the main
|
||||
class MultiLevelQueueScheduling {
|
||||
public MultiLevelQueueScheduling() {
|
||||
|
||||
}
|
||||
|
||||
public void MLQ(int number,process[] processes,int quantum){
|
||||
float totalwt = 0, totaltat = 0;
|
||||
int[] completionTime = new int[number], waitingTime = new int[number], turnaroundTime = new int[number];
|
||||
ArrayList<Integer> RRQueue = new ArrayList<Integer>(); // Queue to store Round Robin Processes Indexes
|
||||
ArrayList<Integer> FCFSQueue = new ArrayList<Integer>(); // Queue to store FCFS Processes Indexes
|
||||
|
||||
for (int i = 0; i < number; i++) {
|
||||
if (processes[i].getQueueNumber() == 1) {
|
||||
RRQueue.add(i);
|
||||
}else{
|
||||
FCFSQueue.add(processes[i].getQueueNumber());
|
||||
}
|
||||
}
|
||||
|
||||
int[] highPriorityProcessArray = new int[number]; // Array to work on it instead of the RRQueue
|
||||
for (int i = 0; i < RRQueue.size(); i++) {
|
||||
highPriorityProcessArray[i] = RRQueue.get(i);
|
||||
}
|
||||
|
||||
int rem_bt[] = new int[RRQueue.size()]; // Array to store the burst time of each process from RRQueue and work on it.
|
||||
for (int i = 0; i < RRQueue.size(); i++) {
|
||||
rem_bt[i] = processes[highPriorityProcessArray[i]].getBurset_time();
|
||||
}
|
||||
int rem_bt_2[] = new int[FCFSQueue.size()]; // Array to store the burst time of each process from FCFSQueue and work on it.
|
||||
for (int i =0;i<FCFSQueue.size();i++){
|
||||
rem_bt_2[i] = processes[FCFSQueue.get(i)].getBurset_time();
|
||||
}
|
||||
|
||||
int t = completionTime[0]; // t is the starting time of executing processes (t=0)
|
||||
int flag =0;
|
||||
|
||||
//Starting to execute the processes
|
||||
while (true) {
|
||||
boolean done = true;
|
||||
|
||||
// Starting of executing the Round Robin Queue Processes
|
||||
for (int i = 0; i < RRQueue.size(); i++)
|
||||
{
|
||||
//Checking if the process arrived and still has burst time
|
||||
if (processes[RRQueue.get(i)].getArrive_time() <= t && rem_bt[i] > 0) {
|
||||
//System.out.println("Process "+processes[RRQueue.get(i)].getName()+" Arrived Now - Time: "+t);
|
||||
// Check again for burst time if still greater than 0
|
||||
if (rem_bt[i] > 0) {
|
||||
done = false; // Processes still working
|
||||
|
||||
//Checking if the process still has burst time
|
||||
if (rem_bt[i] > quantum) {
|
||||
System.out.println("Process "+processes[RRQueue.get(i)].getName()+" Running Now.");
|
||||
// Increase the value of t of the program and shows how much time a process has been processed.
|
||||
t += quantum;
|
||||
// Decrease the burst_time of current process by quantum
|
||||
rem_bt[i] -= quantum;
|
||||
}
|
||||
// If burst time is smaller than or equal to quantum. So this is the last loop this process
|
||||
else {
|
||||
System.out.println("Process "+processes[RRQueue.get(i)].getName()+" Running Now.");
|
||||
// Increase the value of t
|
||||
t = t + rem_bt[i];
|
||||
completionTime[highPriorityProcessArray[i]] = t; //Calculate that process completion time.
|
||||
//--> [Turnaround Time = Completion Time - Arrival Time]
|
||||
turnaroundTime[highPriorityProcessArray[i]] = completionTime[highPriorityProcessArray[i]]
|
||||
- processes[highPriorityProcessArray[i]].getArrive_time();//Calculate the process turnaround time
|
||||
//--> [Waiting Time = Turnaround Time - Burst Time]
|
||||
waitingTime[highPriorityProcessArray[i]] = turnaroundTime[highPriorityProcessArray[i]]
|
||||
- processes[highPriorityProcessArray[i]].getBurset_time();//Calculating the process waiting time
|
||||
// And finally that process finished it’s work so the burst time will be ZERO now.
|
||||
rem_bt[i] = 0;
|
||||
System.out.println("Process "+processes[RRQueue.get(i)].getName()+" Finished Work - Time: "+t);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//Here we are check if there are another processes need to work in the second queue.
|
||||
flag=0;
|
||||
for(int k = 0 ; k <RRQueue.size();k++){
|
||||
if(rem_bt[k] == 0 || processes[RRQueue.get(k)].getArrive_time() > t){
|
||||
flag++;
|
||||
}
|
||||
}
|
||||
}
|
||||
//Position a variable to store the position of the processes from the second queue.
|
||||
int position =0;
|
||||
if(flag==RRQueue.size()){
|
||||
//Looping on the second queue and execute the processes until the first queue filled again.
|
||||
for (int j = 0; j < FCFSQueue.size(); j++) {
|
||||
String fl = " ";//Flag
|
||||
do{
|
||||
//System.out.println("Process "+processes[FCFSQueue.get(j)].getName()+" Arrived Now - Time: "+t);
|
||||
//The following loop to get the process position.
|
||||
for(int y =0;y<number;y++){
|
||||
if(processes[FCFSQueue.get(j)].getName().equals(processes[y].getName())){
|
||||
position = y;
|
||||
break;
|
||||
}
|
||||
}
|
||||
//Calculating the Completion time and turnaround time and waiting time for each process in FCFSQueue.
|
||||
completionTime[position] = t;
|
||||
turnaroundTime[position] = completionTime[position] - processes[position].getArrive_time();
|
||||
waitingTime[position] = turnaroundTime[position] - processes[position].getBurset_time();
|
||||
if(rem_bt_2[j]==0){
|
||||
System.out.println("Process "+processes[FCFSQueue.get(j)].getName()+" Finished Work - Time: "+t);
|
||||
}else {
|
||||
System.out.println("Process "+processes[FCFSQueue.get(j)].getName()+" Running Now.");
|
||||
}
|
||||
t++;//Increase the time.
|
||||
rem_bt_2[j] -= 1;//Decrease the process burst time.
|
||||
//Every unit of time checking if there are new process in the first queue.
|
||||
//So we should stop the FCFS queue execution and go back to the first queue because the first queue has higher priority.
|
||||
for(int h = 0 ; h<RRQueue.size();h++){
|
||||
if(t == processes[RRQueue.get(h)].getArrive_time()){
|
||||
System.out.println("Process "+processes[FCFSQueue.get(j)].getName()+" Blocked Temporary (X) at Time: "+t);
|
||||
fl = "out";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}while(fl.equals(" ") && rem_bt_2[j] >0);
|
||||
if(!fl.equals(" ")){
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If all processes are done their execution.
|
||||
if (done == true)
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
//Printing the final results of execution.
|
||||
System.out.println("\nProcess Name\t\t Queue Number \tBurst Time \tCompletion Time \tWaiting Time \tTurnaround Time");
|
||||
for (int i = 0; i < number; i++) {
|
||||
System.out.println("\n\t" + processes[i].getName() + "\t\t\t\t\t" + processes[i].getQueueNumber() + "\t\t\t\t" + processes[i].getBurset_time() + "\t\t\t\t" + completionTime[i] + "\t\t\t\t" + waitingTime[i] + "\t\t\t\t" + turnaroundTime[i]);
|
||||
}
|
||||
|
||||
//Calculating the AVG Waiting Time and Turnaround Time
|
||||
for (int i = 0; i < number; i++) {
|
||||
totalwt += waitingTime[i];
|
||||
totaltat += turnaroundTime[i];
|
||||
}
|
||||
System.out.println("\n" + "Average Waiting Time is: " + totalwt / number);
|
||||
System.out.println("Average Turnaround Time is : " + totaltat / number);
|
||||
}
|
||||
}
|
||||
|
||||
// The following is the Main function to run the program
|
||||
|
||||
public class Main {
|
||||
public static void main(String[] args) {
|
||||
System.out.print("\n");
|
||||
System.out.println("Welcome to the CPU Scheduler Simulator >>>>> (OS)");
|
||||
System.out.println("-------------------------------------------------");
|
||||
System.out.println("Running the Multi-Level Queue Scheduling Algorithm");
|
||||
multiLevelScheduling();
|
||||
}
|
||||
|
||||
public static void multiLevelScheduling() {
|
||||
int quantum = 0;
|
||||
int number;
|
||||
System.out.println("Enter number of processes: ");
|
||||
Scanner scanner = new Scanner(System.in);
|
||||
number = scanner.nextInt();
|
||||
process[] processes = new process[number];
|
||||
|
||||
for (int i = 0; i < number; i++) {
|
||||
|
||||
System.out.println("Enter the name of process " + (i + 1) + " : ");
|
||||
String name = scanner.next();
|
||||
System.out.println("Enter the arrival time of process " + (i + 1) + " : ");
|
||||
int arrival = scanner.nextInt();
|
||||
System.out.println("Enter the burst time of process " + (i + 1) + " : ");
|
||||
int burst = scanner.nextInt();
|
||||
System.out.println("Enter the queue number of process " + (i + 1) + " : ");
|
||||
int qNumber = scanner.nextInt();
|
||||
|
||||
process process = new process(name, burst, arrival, qNumber);
|
||||
processes[i] = process;
|
||||
}
|
||||
System.out.println("Enter the quantum time: ");
|
||||
quantum = scanner.nextInt();
|
||||
MultiLevelQueueScheduling multiLevelQueueScheduling = new MultiLevelQueueScheduling();
|
||||
multiLevelQueueScheduling.MLQ(number,processes,quantum);
|
||||
|
||||
}
|
||||
}
|
|
@ -1,279 +0,0 @@
|
|||
/**
|
||||
* @author Tawfik Yasser
|
||||
* @since 4-2021
|
||||
* */
|
||||
// Program imports below
|
||||
import java.util.ArrayList;
|
||||
import java.util.Scanner;
|
||||
import java.util.Collections;
|
||||
import java.util.Comparator;
|
||||
|
||||
// The following class to represent the process
|
||||
// ** In future i will fix the name "process" to "Process"
|
||||
class process {
|
||||
String name;
|
||||
int burset_time;
|
||||
int arrive_time;
|
||||
int waiting_time;
|
||||
int turn_round_time;
|
||||
int temp_time;
|
||||
int queueNumber;
|
||||
|
||||
//Priority Algorithm
|
||||
private int processID;
|
||||
private int priority;
|
||||
|
||||
public process() {
|
||||
this.processID = 0;
|
||||
this.priority = 0;
|
||||
this.arrive_time = 0;
|
||||
this.burset_time = 0;
|
||||
}
|
||||
|
||||
public process(String name, int burset_time, int arrive_time) {
|
||||
this.arrive_time = arrive_time;
|
||||
this.burset_time = burset_time;
|
||||
this.name = name;
|
||||
this.temp_time = burset_time;
|
||||
}
|
||||
|
||||
public process(String name, int burset_time, int arrive_time, int queueNumber) {
|
||||
this.name = name;
|
||||
this.burset_time = burset_time;
|
||||
this.arrive_time = arrive_time;
|
||||
this.queueNumber = queueNumber;
|
||||
}
|
||||
|
||||
public process(int processID, int priority, int arrivingTime, int burstTime) {
|
||||
this.processID = processID;
|
||||
this.priority = priority;
|
||||
this.arrive_time = arrivingTime;
|
||||
this.burset_time = burstTime;
|
||||
}
|
||||
|
||||
public int getProcessID() {
|
||||
return processID;
|
||||
}
|
||||
|
||||
public void setProcessID(int processID) {
|
||||
this.processID = processID;
|
||||
}
|
||||
|
||||
public int getPriority() {
|
||||
return priority;
|
||||
}
|
||||
|
||||
public void setPriority(int priority) {
|
||||
this.priority = priority;
|
||||
}
|
||||
|
||||
public void setWaiting_time(int waiting_time) {
|
||||
this.waiting_time = waiting_time;
|
||||
}
|
||||
|
||||
public void setTurn_round_time(int turn_round_time) {
|
||||
this.turn_round_time = turn_round_time;
|
||||
}
|
||||
|
||||
public void setTemp_burset_time(int temp_burset_time) {
|
||||
this.temp_time = temp_burset_time;
|
||||
}
|
||||
|
||||
public int getWaiting_time() {
|
||||
return waiting_time;
|
||||
}
|
||||
|
||||
public int getTurn_round_time() {
|
||||
return turn_round_time;
|
||||
}
|
||||
|
||||
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
public void setName(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
public void setBurset_time(int burset_time) {
|
||||
this.burset_time = burset_time;
|
||||
}
|
||||
|
||||
public void setArrive_time(int arrive_time) {
|
||||
this.arrive_time = arrive_time;
|
||||
}
|
||||
|
||||
public int getBurset_time() {
|
||||
return burset_time;
|
||||
}
|
||||
|
||||
public int getTemp_burset_time() {
|
||||
return temp_time;
|
||||
}
|
||||
|
||||
public int getArrive_time() {
|
||||
return arrive_time;
|
||||
}
|
||||
|
||||
public int getQueueNumber() {
|
||||
return queueNumber;
|
||||
}
|
||||
|
||||
public void setQueueNumber(int queueNumber) {
|
||||
this.queueNumber = queueNumber;
|
||||
}
|
||||
|
||||
public void reduceTime(int time) {
|
||||
if(burset_time >= time)
|
||||
burset_time = burset_time - time;
|
||||
}
|
||||
}
|
||||
|
||||
// ****************** The following class to start the Round Robin Algorithm, Called from the main
|
||||
|
||||
class RoundRobin {
|
||||
public ArrayList<process> round_processes=new ArrayList<>();
|
||||
private int Quantum_time;
|
||||
private int total_time;
|
||||
|
||||
public void setContext_switching(int context_switching) {
|
||||
this.context_switching = context_switching;
|
||||
}
|
||||
|
||||
public int getContext_switching() {
|
||||
return context_switching;
|
||||
}
|
||||
|
||||
private int context_switching;
|
||||
void setQuantum_time(int q)
|
||||
{
|
||||
this.Quantum_time=q;
|
||||
}
|
||||
private void sort_process ()
|
||||
{
|
||||
Collections.sort(round_processes, Comparator.comparing(process :: getArrive_time));
|
||||
}
|
||||
void round_robien ()
|
||||
{
|
||||
sort_process();
|
||||
int flag=0,i=0,temp;
|
||||
while (flag!=round_processes.size())
|
||||
{
|
||||
if (round_processes.get(i).getBurset_time()!=0)
|
||||
{
|
||||
|
||||
if (round_processes.get(i).getBurset_time()>=Quantum_time)
|
||||
{
|
||||
System.out.println("process :"+round_processes.get(i).getName()+"is running");
|
||||
total_time+=Quantum_time;
|
||||
temp=round_processes.get(i).getBurset_time();
|
||||
temp-=Quantum_time;
|
||||
round_processes.get(i).setBurset_time(temp);
|
||||
if (temp==0)
|
||||
{
|
||||
flag++;
|
||||
round_processes.get(i).setTurn_round_time(total_time);
|
||||
System.out.println("process :"+round_processes.get(i).getName()+"is terminated");
|
||||
i++;
|
||||
}
|
||||
else {
|
||||
System.out.println("process :"+round_processes.get(i).getName()+"is waiting");
|
||||
i++;}
|
||||
total_time+=context_switching;
|
||||
|
||||
}
|
||||
else if (round_processes.get(i).getBurset_time()<Quantum_time)
|
||||
{
|
||||
System.out.println("process :"+round_processes.get(i).getName()+"is running");
|
||||
total_time+=round_processes.get(i).getBurset_time();
|
||||
round_processes.get(i).setBurset_time(0);
|
||||
round_processes.get(i).setTurn_round_time(total_time);
|
||||
flag++;
|
||||
System.out.println("process :"+round_processes.get(i).getName()+"is terminated");
|
||||
i++;
|
||||
total_time+=context_switching;
|
||||
}
|
||||
}
|
||||
else
|
||||
i++;
|
||||
if (i==round_processes.size())
|
||||
i=0;
|
||||
}
|
||||
}
|
||||
public double calculate_average_waiting() {
|
||||
double av=0;
|
||||
|
||||
for (int i = 0; i < round_processes.size(); i++) {
|
||||
av+=round_processes.get(i).getTurn_round_time()-round_processes.get(i).getTemp_burset_time();
|
||||
}
|
||||
return (av/round_processes.size());
|
||||
}
|
||||
public double calculate_average_turnround() {
|
||||
double av=0;
|
||||
|
||||
for (int i = 0; i < round_processes.size(); i++) {
|
||||
av+=round_processes.get(i).getTurn_round_time();
|
||||
}
|
||||
return (av/round_processes.size());
|
||||
}
|
||||
public void print ()
|
||||
{
|
||||
for (int i=0;i<round_processes.size();i++)
|
||||
{
|
||||
System.out.print("Name: "+round_processes.get(i).getName()+" ");
|
||||
System.out.println("turn round time: "+round_processes.get(i).getTurn_round_time());
|
||||
System.out.print("waiting time: "+(round_processes.get(i).getTurn_round_time()-round_processes.get(i).getTemp_burset_time())+"\n");
|
||||
}
|
||||
System.out.println("average waiting time : "+calculate_average_waiting());
|
||||
System.out.println("average turn_round_time : "+calculate_average_turnround());
|
||||
}
|
||||
}
|
||||
|
||||
// The following is the Main function to run the program
|
||||
|
||||
class Main {
|
||||
public static void main(String[] args) {
|
||||
System.out.print("\n");
|
||||
System.out.println("Welcome to the CPU Scheduler Simulator >>>>> (OS)");
|
||||
System.out.println("-------------------------------------------------");
|
||||
System.out.println("Running the Round Robin Scheduling Algorithm");
|
||||
RRAlgorithm();
|
||||
}
|
||||
|
||||
public static void RRAlgorithm() {
|
||||
RoundRobin r1=new RoundRobin();
|
||||
int number,quantam,burset_time,arrive_time,con;
|
||||
Scanner input=new Scanner(System.in);
|
||||
System.out.println("enter number of process");
|
||||
number=input.nextInt();
|
||||
process p2;
|
||||
String name;
|
||||
for (int i=0;i<number;i++)
|
||||
{
|
||||
System.out.println("enter burset_time of process");
|
||||
burset_time=input.nextInt();
|
||||
|
||||
System.out.println("enter arrive_time of process");
|
||||
arrive_time=input.nextInt();
|
||||
|
||||
System.out.println("enter name of process");
|
||||
name=input.nextLine();
|
||||
name=input.nextLine();
|
||||
|
||||
p2=new process(name,burset_time,arrive_time);
|
||||
|
||||
r1.round_processes.add(p2);
|
||||
}
|
||||
System.out.println("enter quantam time");
|
||||
quantam=input.nextInt();
|
||||
System.out.println("enter context switching");
|
||||
con=input.nextInt();
|
||||
r1.setContext_switching(con);
|
||||
|
||||
r1.setQuantum_time(quantam);
|
||||
r1.round_robien();
|
||||
r1.print();
|
||||
|
||||
}
|
||||
}
|
|
@ -1,9 +0,0 @@
|
|||
# Searching algorithms
|
||||
|
||||
### C or C++
|
||||
|
||||
1. [Linear Search](c-or-cpp/linear-search.cpp)
|
||||
2. [Binary Search](c-or-cpp/binary-search.cpp)
|
||||
3. [Jump Search](c-or-cpp/jump-search.cpp)
|
||||
4. [finding squareroot using binary search](c-or-cpp/sqrt-monotonic-binary-search.cpp)
|
||||
5. [Interpolation Search](c-or-cpp/interpolation-search.cpp)
|
|
@ -1,16 +1,5 @@
|
|||
# Sorting algorithms
|
||||
|
||||
### C or C++
|
||||
### C
|
||||
|
||||
1. [Bubble Sort](c-or-cpp/bubble-sort.cpp)
|
||||
2. [Insertion Sort](c-or-cpp/insertion-sort.cpp)
|
||||
3. [Selection Sort](c-or-cpp/selection-sort.cpp)
|
||||
4. [Merge Sort](c-or-cpp/merge-sort.c)
|
||||
5. [Quick Sort](c-or-cpp/quick-sort.cpp)
|
||||
6. [Heap Sort](c-or-cpp/heap-sort.cpp)
|
||||
7. [Counting Sort](c-or-cpp/counting-sort.cpp)
|
||||
8. [Bucket Sort](c-or-cpp/bucket-sort.cpp)
|
||||
9. [Radix Sort](c-or-cpp/radix-sort.cpp)
|
||||
10. [Shell Sort](c-or-cpp/shell-sort.cpp)
|
||||
11. [Comb Sort](c-or-cpp/comb-sort.cpp)
|
||||
12. [3 Way Quick Sort](c-or-cpp/3way_quick_sort.cpp)
|
||||
1. [Merge Sort](c-or-cpp/merge-sort.c)
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
# Stacks
|
||||
|
||||
### C or C++
|
||||
|
||||
1. [Balanced Parenthesis](c-or-cpp/balanced-parenthesis.cpp)
|
|
@ -3,10 +3,5 @@
|
|||
### C or C++
|
||||
|
||||
1. [Palindrome Check](c-or-cpp/palindrome.c)
|
||||
2. [All subsequences](c-or-cpp/sequence.cpp)
|
||||
3. [KMP String Searching](c-or-cpp/kmp.cpp)
|
||||
4. [Rabin Karp String Searching](c-or-cpp/rabin-karp.cpp)
|
||||
5. [String Tokeniser](c-or-cpp/string-tokeniser.cpp)
|
||||
6. [String Reversal](c-or-cpp/string-reverse.cpp)
|
||||
7. [Permutation of String](c-or-cpp/Permutation-of-String.c)
|
||||
8. [Count Words](c-or-cpp/count-words.c)
|
||||
2. [Permutation of String](c-or-cpp/Permutation-of-String.c)
|
||||
3. [Count Words](c-or-cpp/count-words.c)
|
||||
|
|
|
@ -1,9 +0,0 @@
|
|||
# Trees
|
||||
|
||||
### C or C++
|
||||
|
||||
1. [Pre, In & Post Order Traversals](c-or-cpp/pre-in-post-traversal.cpp)
|
||||
2. [Level Order Traversal](c-or-cpp/level-order-traversal.cpp)
|
||||
3. [Build Binary Tree using Pre,In & Post Order](c-or-cpp/build-binary-tree.cpp)
|
||||
4. [Count and find the Sum of nodes in a Binary Tree](c-or-cpp/count-and-sum-of-nodes-in-binary-tree.cpp)
|
||||
|
Loading…
Reference in New Issue