chore(C): min & max value of the tree (#239)

pull/264/head
Sambit Kumar Tripathy 2021-04-25 20:41:36 +05:30 committed by GitHub
parent 25b71cb15a
commit eff01210bf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 202 additions and 29 deletions

View File

@ -23,7 +23,12 @@
- [Palindrome](strings/palindrome.c) - [Palindrome](strings/palindrome.c)
- [Permutation of String](string/Permutation-of-String.c) - [Permutation of String](string/Permutation-of-String.c)
## Tree
- [Height Of Tree](tree/height-of-a-tree.c)
- [Max and Min Element Of Tree](tree/min-and-max-of-tree.c)
## Searching ## Searching
- [Binary Search](searching/Binary-search.c) - [Binary Search](searching/Binary-search.c)

View File

@ -0,0 +1,66 @@
// Program to find the height in a tree.
#include<stdio.h>
#include<stdlib.h>
struct Node{
int data;
struct Node *left;
struct Node *right;
};
// creating a Node
struct Node * createNode(int data){
struct Node *n;
n = (struct Node *)malloc(sizeof(struct Node)); // allocating the memory in the heap
n -> data = data; // setting the data
n -> left = NULL; // setting left node to be NULL
n -> right = NULL; // setting right node to be NULL
return n; // returning the created node
}
// Function to find the max between 2 number
int max(int a, int b){
if(a>b)
return a;
return b;
}
// Function to find height of the tree
int findHeight(struct Node*root){
if (root == NULL) // if node is NULL then it will return -1
return -1;
return max(findHeight(root->left),findHeight(root->right))+1; // it will return max of height of its 2 subtrees +1
}
// Driver code
int main(int argc, char const *argv[]){
// constructing the root node by calling createNode function
struct Node *p0 = createNode(5);
struct Node *p1 = createNode(3);
struct Node *p2 = createNode(6);
struct Node *p3 = createNode(1);
struct Node *p4 = createNode(4);
// linking the root node with left and right child nodes
p0 -> left = p1;
p0 -> right = p2;
p1 -> left = p3;
p1 -> right = p4;
// The tree looks like this
// p0
// / \
// p1 p2
// / \
// p3 p4
printf("\nHeight of the tree is %d",findHeight(p0));
return 0;
}
/*
Output: Height of the tree is 2
Time complexity: O(n)
*/

View File

@ -0,0 +1,102 @@
// program to find the minimum and maximum element in a binary search tree (using recursion)
#include<stdio.h>
#include<stdlib.h>
struct Node{
int data;
struct Node *left;
struct Node *right;
};
// creating a Node
struct Node * createNode(int data){
struct Node *n;
n = (struct Node *)malloc(sizeof(struct Node)); // allocating the memory in the heap
n -> data = data; // setting the data
n -> left = NULL; // setting left node to be NULL
n -> right = NULL; // setting right node to be NULL
return n; // returning the created node
}
//function to insert a node in tree
struct Node *insert(struct Node *root, int data){
if(root==NULL){ // empty tree condition
root = createNode(data);
return root;
}
else if(data <= root->data) // data to be inserted at left subtree
root->left = insert(root->left,data);
else if(data > root->data) // data to be inserted at right subtree
root->right = insert(root->right,data);
return root;
}
//function to find the min element from the tree using recursion
int findMin(struct Node *root){
if(root==NULL){
printf("Tree is empty\n");
return -1;
}
struct Node *current = root; // current is the traversing node
while(current->left !=NULL){
current=current->left; // if left node is not empty then traversing node = left node
}
return current->data;
}
//function to find the max element using recursion
int findMax(struct Node *root){
if(root==NULL){
printf("Tree is empty\n");
return -1;
}
struct Node *current = root; // current is the traversing node
while(current->right !=NULL){
current=current->right; // if right node is not empty then traversing node = right node
}
return current->data;
}
int main(int argc, char const *argv[]){
// constructing the root node
struct Node *p0 = createNode(5);
struct Node *p1 = createNode(3);
struct Node *p2 = createNode(6);
struct Node *p3 = createNode(1);
struct Node *p4 = createNode(4);
// linking the root node with left and right children
p0 -> left = p1;
p0 -> right = p2;
p1 -> left = p3;
p1 -> right = p4;
// the tree looks like this
// p0
// / \
// p1 p2
// / \
// p3 p4
// inserting few new nodes
insert(p0,15);
insert(p0,18);
insert(p0,0);
insert(p0,-1);
printf("\nMin element of the tree is %d",findMin(p0));
printf("\nMax element of the tree is %d",findMax(p0));
return 0;
}
/*
Output:
Min element of the tree is -1
Max element of the tree is 18
Time complexity: O(n)
*/