chore(Python): added Binary Tree (#467)

Co-authored-by: Arsenic <54987647+Arsenic-ATG@users.noreply.github.com>
pull/469/head^2
Mohammad Shakib 2021-09-22 17:03:10 +06:00 committed by GitHub
parent 5883aa6346
commit f77d5e8e3a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 81 additions and 0 deletions

View File

@ -63,3 +63,7 @@
3. [N-th Term Of Fibonacci Series](dynamic_programming/fibonacci_series_nth_term.py)
4. [Catalan Sequence](dynamic_programming/catalan_sequence.py)
5. [0/1 Knapsack Problem](dynamic_programming/knapsack.py)
## Trees
1. [Binary Tree](trees/binary_tree.py)

View File

@ -0,0 +1,77 @@
# Author: github.com/Mo-Shakib
class Node:
def __init__(self, data = None):
self.left = None
self.right = None
self.data = data
# for setting left node
def setLeft(self, node):
self.left = node
# for setting right node
def setRight(self, node):
self.right = node
# for getting the left node
def getLeft(self):
return self.left
# for getting right node
def getRight(self):
return self.right
# for setting data of a node
def setData(self, data):
self.data = data
# for getting data of a node
def getData(self):
return self.data
# in this we traverse first to the leftmost node, then print its data and then traverse for rightmost node
def inorder(Tree):
if Tree:
inorder(Tree.getLeft())
print(Tree.getData(), end = ' ')
inorder(Tree.getRight())
return
# in this we first print the root node and then traverse towards leftmost node and then to the rightmost node
def preorder(Tree):
if Tree:
print(Tree.getData(), end = ' ')
preorder(Tree.getLeft())
preorder(Tree.getRight())
return
# in this we first traverse to the leftmost node and then to the rightmost node and then print the data
def postorder(Tree):
if Tree:
postorder(Tree.getLeft())
postorder(Tree.getRight())
print(Tree.getData(), end = ' ')
return
if __name__ == '__main__':
root = Node(1)
root.setLeft(Node(2))
root.setRight(Node(3))
root.left.setLeft(Node(4))
print('Inorder Traversal:')
inorder(root)
print('\nPreorder Traversal:')
preorder(root)
print('\nPostorder Traversal:')
postorder(root)
# OUTPUT:
# Inorder Traversal:
# 4 2 1 3
# Preorder Traversal:
# 1 2 4 3
# Postorder Traversal:
# 4 2 3 1