diff --git a/algorithms/CPlusPlus/README.md b/algorithms/CPlusPlus/README.md index ec841936..3e9ac653 100644 --- a/algorithms/CPlusPlus/README.md +++ b/algorithms/CPlusPlus/README.md @@ -158,3 +158,6 @@ - [Sum of n natural numbers](Recursion/sum-of-n.cpp) - [Minimum and maximum element in array](Recursion/min-max-element-in-array.cpp) - [Prime Check](Recursion/recursive-prime.cpp) +- [Array sorted or not](Recursion\array-sorted-or-not.cpp) +- [Product of two numbers](Recursion\product-of-numbers.cpp) +- [Product of digits in a number](Recursion\product-of-digits.cpp) diff --git a/algorithms/CPlusPlus/Recursion/array-sorted-or-not.cpp b/algorithms/CPlusPlus/Recursion/array-sorted-or-not.cpp new file mode 100644 index 00000000..a9a17af7 --- /dev/null +++ b/algorithms/CPlusPlus/Recursion/array-sorted-or-not.cpp @@ -0,0 +1,54 @@ +/* +Description: A program to check if array is sorted or not using recursion + +Approach: To compare last (n-1) element with the second last (n-2) element. +And decrementing the value of n at each recursive call, so that +we can search the entire array. + +Time complexity: O(n) +*/ + +#include +using namespace std; + +//function starts +bool sorted(int arr[], int n) +{ + //base case + if (n == 1 || n == 0) + { + return true; + } + + if (arr[n - 1] > arr[n - 2]) + { + //recursive function call + return sorted(arr, n - 1); + } + //if the element at (n-1) index is not greater than (n-2) element + //return false directly, which means array is not sorted + return false; +} + +//main starts +int main() +{ + int arr[] = {8, 2, 3, 4, 5, 6}; + int n = sizeof(arr) / sizeof(arr[0]); + cout << sorted(arr, n); + return 0; +} + +/* +Sample Input: +arr=[8, 2, 3, 4, 5, 6] +n=6 + +Output: 0 + +Sample Input: +arr=[1,2,3] +n=3 + +Output: 1 +*/ \ No newline at end of file diff --git a/algorithms/CPlusPlus/Recursion/product-of-digits.cpp b/algorithms/CPlusPlus/Recursion/product-of-digits.cpp new file mode 100644 index 00000000..8ac98b78 --- /dev/null +++ b/algorithms/CPlusPlus/Recursion/product-of-digits.cpp @@ -0,0 +1,42 @@ +/* +Description: A program to get product of digits using recursion + +TIme Complexity: O(n) where n is the number of digits present in the number +*/ + +#include +using namespace std; + +//function starts +int dp(int n) +{ + //base case + //where n is a one-digit number + if (n % 10 == n) + { + return n; + } + //recursive function call + //at every recursive call, dividing the number by 10 + return (n % 10) * dp(n / 10); +} + +//main starts +int main() +{ + int n = 333; + cout << dp(n); + return 0; +} + +/* +Sample Input: +n=333 + +Output: 27 + +Sample Input: +n=412 + +Output: 8 +*/ \ No newline at end of file diff --git a/algorithms/CPlusPlus/Recursion/product-of-numbers.cpp b/algorithms/CPlusPlus/Recursion/product-of-numbers.cpp new file mode 100644 index 00000000..60ec87fe --- /dev/null +++ b/algorithms/CPlusPlus/Recursion/product-of-numbers.cpp @@ -0,0 +1,49 @@ +/* +Description: C++ program to find product of 2 numbers using Recursion. + +Approach: Product of two numbers (x,y) can be defined as y times sum of x. +Calling the function recursively y times and adding x to it. + +Time Complexity: O(n) where n is the value of y +*/ + +#include +using namespace std; + +// recursive function to calculate multiplication of two numbers +int product(int x, int y) +{ + // if x is less than + // y swap the numbers + if (x < y) + return product(y, x); + + // iteratively calculate + // y times sum of x + else if (y != 0) + return (x + product(x, y - 1)); + + // if any of the two numbers is + // zero return zero + else + return 0; +} + +int main() +{ + int x = 5, y = 2; + cout << product(x, y); + return 0; +} + +/* +Sample Input: +x=5, y=2 + +Output: 10 + +Sample Input: +x=6, y=7 + +Output: 42 +*/ \ No newline at end of file