// Program to print BFS traversal from a given // source vertex. BFS(int s) traverses vertices // reachable from s. #include #include using namespace std; // This class represents a directed graph using // adjacency list representation class Graph { int V; // No. of vertices // Pointer to an array containing adjacency // lists list *adj; public: Graph(int V); // Constructor // function to add an edge to graph void addEdge(int v, int w); // prints BFS traversal from a given source s void BFS(int s); }; Graph::Graph(int V) { this->V = V; adj = new list[V]; } void Graph::addEdge(int v, int w) { adj[v].push_back(w); // Add w to v’s list. } void Graph::BFS(int s) { // Mark all the vertices as not visited bool *visited = new bool[V]; for(int i = 0; i < V; i++) visited[i] = false; // Create a queue for BFS list queue; // Mark the current node as visited and enqueue it visited[s] = true; queue.push_back(s); // 'i' will be used to get all adjacent // vertices of a vertex list::iterator i; while(!queue.empty()) { // Dequeue a vertex from queue and print it s = queue.front(); cout << s << " "; queue.pop_front(); // Get all adjacent vertices of the dequeued // vertex s. If a adjacent has not been visited, // then mark it visited and enqueue it for (i = adj[s].begin(); i != adj[s].end(); ++i) { if (!visited[*i]) { visited[*i] = true; queue.push_back(*i); } } } } // Driver program to test methods of graph class int main() { // Create a graph given in the above diagram int edges; cout << "Enter number of edges: "; cin >> edges; Graph g(edges); for(int i = 0; i < edges; i++) { int u, v; cout << "Enter an edge: "; cin >> u >> v; g.addEdge(u, v); } cout << "Following is Breadth First Traversal " << "(starting from vertex 0) \n"; g.BFS(0); return 0; } //Time complexity: O(n), where n is the number of vertices in graph //Space complexity: O(n), where n is the number of vertices in graph