# Python program that implements Bellman-Ford's single source # shortest path algorithm. The algorithm computes the shortest paths # from a single source vertext to all the other vertices in a weighted # digraph. It is slower than Dijkstra's algorithm for the same problem, # but more versatile, as it is capable of handling graphs in which # some of the edge weigths are negative numbers. Worst case peformace # is O(V *E) but best case performance can achieve O(E) time. Worst case # space complexity is O(V). # Class to represent a graph class Graph: def __init__(self, vertices): self.V = vertices # No. of vertices self.graph = [] # function to add an edge to graph def addEdge(self, u, v, w): self.graph.append([u, v, w]) # utility function used to print the solution def printArr(self, dist): print("Vertex Distance from Source") for i in range(self.V): print("{0}\t\t{1}".format(i, dist[i])) # The main function that finds shortest distances from src to # all other vertices using Bellman-Ford algorithm. The function # also detects negative weight cycle def BellmanFord(self, src): # Step 1: Initialize distances from src to all other vertices # as INFINITE dist = [float("Inf")] * self.V dist[src] = 0 # Step 2: Relax all edges |V| - 1 times. A simple shortest # path from src to any other vertex can have at-most |V| - 1 # edges for _ in range(self.V - 1): # Update dist value and parent index of the adjacent vertices of # the picked vertex. Consider only those vertices which are still in # queue for u, v, w in self.graph: if dist[u] != float("Inf") and dist[u] + w < dist[v]: dist[v] = dist[u] + w # Step 3: check for negative-weight cycles. The above step # guarantees shortest distances if graph doesn't contain # negative weight cycle. If we get a shorter path, then there # is a cycle. for u, v, w in self.graph: if dist[u] != float("Inf") and dist[u] + w < dist[v]: print("Graph contains negative weight cycle") return # print all distance self.printArr(dist) # Driver code if __name__ == '__main__': g = Graph(5) g.addEdge(0, 1, -1) g.addEdge(0, 2, 4) g.addEdge(1, 2, 3) g.addEdge(1, 3, 2) g.addEdge(1, 4, 2) g.addEdge(3, 2, 5) g.addEdge(3, 1, 1) g.addEdge(4, 3, -3) # function call g.BellmanFord(0)