//Graph Kruskal algorithm #include using namespace std; class Edge { public: int src, dest, weight; }; class Graph { public: int V, E; Edge* edge; }; // Creates a graph with V vertices and E edges Graph* createGraph(int V, int E) { Graph* graph = new Graph; graph->V = V; graph->E = E; graph->edge = new Edge[E]; return graph; } // A structure to represent a subset for union-find class subset { public: int parent; int rank; }; int find(subset subsets[], int i) { // find root and make root as parent of i // (path compression) if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } // A function that does union of two sets of x and y // (uses union by rank) void Union(subset subsets[], int x, int y) { int xroot = find(subsets, x); int yroot = find(subsets, y); // Attach smaller rank tree under root of high // rank tree (Union by Rank) if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[xroot].rank > subsets[yroot].rank) subsets[yroot].parent = xroot; // If ranks are same, then make one as root and // increment its rank by one else { subsets[yroot].parent = xroot; subsets[xroot].rank++; } } // Compare two edges according to their weights. // Used in qsort() for sorting an array of edges int myComp(const void* a, const void* b) { Edge* a1 = (Edge*)a; Edge* b1 = (Edge*)b; return a1->weight > b1->weight; } // The main function to construct MST using Kruskal's // algorithm void KruskalMST(Graph* graph) { int V = graph->V; Edge result[V]; // Tnis will store the resultant MST int e = 0; // An index variable, used for result[] int i = 0; qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp); // Allocate memory for creating V ssubsets subset* subsets = new subset[(V * sizeof(subset))]; // Create V subsets with single elements for (int v = 0; v < V; ++v) { subsets[v].parent = v; subsets[v].rank = 0; } while (e < V - 1 && i < graph->E) { Edge next_edge = graph->edge[i++]; int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); if (x != y) { result[e++] = next_edge; Union(subsets, x, y); } // Else discard the next_edge } cout << "Following are the edges in the " "MST\n"; int minimumCost = 0; for (i = 0; i < e; ++i) { cout << result[i].src << " -- " << result[i].dest << " == " << result[i].weight << endl; minimumCost = minimumCost + result[i].weight; } cout << "Minimum Cost Spanning Tree: " << minimumCost << endl; } // Helper function which takes in src, dest, weight, index, address of graph as an argument // to update the value of graph for respective index void updateGraph(int s, int d, int w, int idx, Graph** graph){ graph->edge[idx].src = s; graph->edge[idx].dest = d; graph->edge[idx].weight = w; } // Driver code int main() { int V = 4; // Number of vertices in graph int E = 5; // Number of edges in graph Graph* graph = createGraph(V, E); // add edge 0-1 updateGraph(0, 1, 10, 0, &graph); // add edge 0-2 updateGraph(0, 2, 6, 1, &graph); // add edge 0-3 updateGraph(0, 3, 5, 2, &graph); // add edge 1-3 updateGraph(1, 3, 15, 3, &graph); // add edge 2-3 updateGraph(2, 3, 4, 4, &graph); KruskalMST(graph); return 0; }