#include #include //Structure of the Tree struct TreeNode{ int data; TreeNode* left; TreeNode* right; TreeNode(const int& data): data(data), left(nullptr), right(nullptr){} }; TreeNode* find(TreeNode* root, const int& data){ /** * Find the node that contains the given data and * return that node * * @params: `root` root/parent node of the tree * @params: `data` data to be find in the tree * @return: tree node that contains the data * * Average case Time Complexity: O(log(n)) * Worst case Time Complexity: O(n) * */ if(root == nullptr) { throw std::runtime_error("Error: find() cannot find the data. The data doesn't exist."); } else if(root->data == data) { return root; } else if(root->data < data) { return find(root->right, data); } else { return find(root->left, data); } } void Insert(TreeNode*& root, const int& data){ /** * Create and Insert the node in the appropriate place of the tree * * @params: `root` root/parent node of the tree * @params: `data` data to be inserted in the tree * @return: void * * Average case Time Complexity: O(log(n)) * Worst case Time Complexity: O(n) * */ if(root == nullptr) { root = new TreeNode(data); } else if(root->data == data) { throw std::runtime_error("The node already exist. Duplicates not allowed"); } else if(root->data < data) { Insert(root->right, data); } else { Insert(root->left, data); } } bool isfull(TreeNode* root){ /** * * Check if a binary tree is full or not * A binary tree is full when every node in the * tree has either two or zero child nodes. * * @params: `root` root/parent node of the tree * * @return: true if it the binary tree is full else false */ if(root == nullptr) { return true; } if(root->left == nullptr && root->right == nullptr) { return true; } if((root->left != nullptr && root->right != nullptr) ) { return isfull(root->left) && isfull(root->right); } return false; } int depth(TreeNode* root){ /** * Find the depth of the left most tree. * Here the depth of the left most tree is found but * it is only a matter of preference. * * @params: `root` root/parent node of the tree * * @return: `d` returns the depth of the left most tree */ int d = 0; while(root != nullptr){ root = root->left; d++; } return d; } bool perfect_recursive(TreeNode* cur, int depth, int level = 0){ /** * A Recursive strategy to check if a tree is perfect or not * * A binary tree is perfect if when all the inner node's * has two children and the all the leaf node's are at the * same level. * * @params: `cur` node of the tree * @params: `depth` depth of the left most tree * @params: `level` level of the cur node * * @return: true if the binary tree is perfect else false */ if(cur == nullptr) { return true; } if(cur->left == nullptr && cur->right == nullptr) { return depth == level; } if(cur->left != nullptr && cur->right != nullptr) { return perfect_recursive(cur->left, depth, level+1) && perfect_recursive(cur->right, depth, level+1); } return false; } int count_nodes(TreeNode* cur){ /** * Count the number of node's in the tree * @params: `cur` node of the tree */ if(cur != nullptr){ return 1 + count_nodes(cur->left) + count_nodes(cur->right); } return 0; } int height(TreeNode* cur){ /** * Find the height of the tree * * @params: `cur` node of the tree */ if(cur != nullptr){ return 1 + std::max(height(cur->left), height(cur->right)); } return 0; } bool perfect(TreeNode* cur){ /** * Knowing the height and the number of node's of * the tree we can find whether the tree is perfect or not * * A binary tree is perfect if when all the inner node's * has two children and the all the leaf node's are at the * same level. */ int h = height(cur) - 1; int N = count_nodes(cur); if(N == pow(2, h+1) - 1) { return true; } return false; } bool isperfect(TreeNode* root){ /** * * @params: `root` root/parent node of the tree * * @return: true if the binary tree is perfect else false */ //if(perfect(root)) { return true; } if(perfect_recursive(root, depth(root) - 1)) { return true; } return false; } void print(TreeNode* root){ /** * Print the tree in an inorder fashion * * @params: `root` root/parent node of the tree * @return: void */ if(root != nullptr){ print(root->left); std::cout << root->data << " "; print(root->right); } } void free(TreeNode* root){ /* * Free up the memory in the heap * * @params: `root` root/parent node of the tree */ if(root != nullptr){ free(root->left); free(root->right); delete root; root = nullptr; } } int main(){ TreeNode* root = nullptr; Insert(root, 37); Insert(root, 19); Insert(root, 4); Insert(root, 22); Insert(root, 51); Insert(root, 55); Insert(root, 42); Insert(root, 20); Insert(root, 11); Insert(root, 2); print(root); TreeNode* n = find(root, 19); std::cout << "\nValue of n: " << n->data << std::endl; if(isfull(root)) { std::cout << "The binary tree is FULL" << std::endl; } else { std::cout << "The binary tree is not FULL" << std::endl; } if(isperfect(root)) { std::cout << "The binary tree is PERFECT" << std::endl; } else { std::cout << "The binary tree is not PERFECT" << std::endl; } /* Tree structure 37 / \ 19 51 / \ / \ 4 22 42 55 /\ / 2 11 20 OUTPUT: 2 4 11 19 20 22 37 42 51 55 Value of n: 19 The binary tree is not FULL The binary tree is not PERFECT */ // free the memory free(root); return 0; }