107 lines
2.1 KiB
C++
107 lines
2.1 KiB
C++
#include <bits/stdc++.h>
|
|
|
|
using namespace std;
|
|
const int N = 500, OO = 1e9;
|
|
|
|
int dist[N][N];
|
|
|
|
//Initialize the distance matrix with infinities to indicate that there is no edge between nodes
|
|
void initialize_dist(int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < n; j++) {
|
|
dist[i][j] = OO;
|
|
if (i == j) {
|
|
dist[i][j] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Take Edge input and update the distance matrix
|
|
void input(int m) {
|
|
for (int i = 0; i < m; i++) {
|
|
int a, b, c;
|
|
cin >> a >> b >> c;
|
|
dist[a][b] = c;
|
|
dist[b][a] = c;
|
|
}
|
|
}
|
|
|
|
//Perform Floyd-Warshall algorithm to calculate all shortest paths
|
|
int floyd(int n) {
|
|
for (int k = 0; k < n; k++) {
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < n; j++) {
|
|
if (dist[i][j] > dist[i][k] + dist[k][j]) {
|
|
dist[i][j] = dist[i][k] + dist[k][j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Take queries and output the shortest distance for each query
|
|
void output(int q) {
|
|
for (int i = 0; i < q; i++) {
|
|
int x, y;
|
|
cin >> x >> y;
|
|
cout << dist[x][y] << endl;
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
int n, m, q;
|
|
cin >> n; // Number of nodes
|
|
initialize_dist(n);
|
|
cin >> m; // Number of edges
|
|
input(m);
|
|
floyd(n);
|
|
cin >> q; // Number of queries
|
|
output(q);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Time Complexity: O(n^3)
|
|
Memory Complexity: O(n^2)
|
|
*/
|
|
|
|
/*
|
|
Example:
|
|
5 // Number of nodes
|
|
10 // Number of edges
|
|
0 1 5 // Edge from Node 0 to Node 1 with Weight 5
|
|
0 2 3
|
|
0 3 4
|
|
0 4 1
|
|
1 2 4
|
|
1 3 1
|
|
1 4 1
|
|
2 3 1
|
|
2 4 2
|
|
3 4 4
|
|
10 // Number of Queries
|
|
0 1 // Print Minimum Path between Nodes 0 and 1
|
|
0 2
|
|
0 3
|
|
0 4
|
|
1 2
|
|
1 3
|
|
1 4
|
|
2 3
|
|
2 4
|
|
3 4
|
|
|
|
Output:
|
|
2 //Minimum path from 0 to 1
|
|
3 //Minimum path from 0 to 2
|
|
3 //Minimum path from 0 to 3
|
|
1 //Minimum path from 0 to 4
|
|
2 //Minimum path from 1 to 2
|
|
1 //Minimum path from 1 to 3
|
|
1 //Minimum path from 1 to 4
|
|
1 //Minimum path from 2 to 3
|
|
2 //Minimum path from 2 to 4
|
|
2 //Minimum path from 3 to 4
|
|
*/
|